
Python with CodeX
Learn Python fundamentals through fun projects with the CodeX.

Mission 1 - Welcome

Welcome to the CodeSpace
Development Environment!

A virtual world for exploring robotics with code.

We're glad you're here!
You are about to experience a powerful learning and coding environment:

Learn to code in Python by completing challenging Missions.
Test your real-world programs in simulation or on a physical device.

Ready to begin your first Mission?
Click the NEXT button...

Objective 1 - Mission Objectives

Objectives
Each Mission contains a series of Objectives. You're now reading an Objective Panel.

Objectives are numbered on the Mission Bar to the right.
Click the number to show or hide the Objective Panel.
Use the icons at the top of the Mission Bar to choose from available Missions and Packs.

The goals to complete the Objective are below:

Goal:

Click the 1 on the Mission Bar to close the Objective Panel →

Then click 1 again to bring it back!

Solution:

N/A

Objective 2 - Text Editor

Text Editor
On the left side of your screen is the text editor.

You'll be typing in Python code here!
That's how you'll control your physical or virtual device.

Goal:

Complete this Objective by making any change in the text editor.

Solution:

N/A

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 1 of 295

https://firialabs.com/

Objective 3 - Tool Box

Your Coding Toolbox
As you work through each mission you'll be adding concepts to your toolbox.

It's an important reference you will need in later missions!
And when you are coding and debugging your own remixes.

Collect 'em ALL!

When you see a tool, CLICK on it!

You won't have anything in your toolbox unless you put it there.

Access Your Tools

You can always open up your toolbox later for reference.

Just click the at the right side of the window.

Goal:

Click the tool text above to open the Toolbox and then close the Toolbox.

Tools Found: Debugging

Solution:

N/A

Objective 4 - Simulation Controls

Simulation Controls
Below the 3D view is your Simulation Toolbar.

There are controls to select a 3D environment.
You can also control the Camera in the 3D scene, and more!

This is a virtual camera for zooming around inside the sim, not your webcam!
You can manage with a trackpad, but a mouse is highly recommended for 3D navigation.

Click on the Camera menu below.

Select Help
Click the inside the Camera Help window to close it.

Want to hide these instructions?

Click the at the upper-right corner.
You can always bring an Objective back by clicking its number on the right side.
Or you can maximize it by clicking

Goals:

Open and close the Camera Help.

Rotate the camera view around the virtual device in the 3D scene!

Rotate all the way around!

Solution:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 2 of 295

N/A

Quiz 1 - Your First Mission Quiz

Question 1: Are you ready to learn some Python coding with your virtual or physical device?

 Yes. This is simple!

 It looks too complicated.

 I don't think I can.

Question 2: Select the two things you learned in this mission.

 How to move the camera

 How to open an objective

 How to run a half marathon

 How to control the weather

Mission 1 Complete

Welcome to CodeSpace!
You've completed your first Mission.

You can always click the Mission Select icon at the upper right side of the window to go back to previous Missions.

You've learned the basics of Missions and Objectives.

Now it's time to get to know your device!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 3 of 295

Mission 2 - Introducing CodeX

Greetings!
You are at the beginning of an exciting journey. I'll be your guide as you explore the immense world of Python with your CodeX.

Why learn coding?

Hey, it's not just for robots anymore!
Or laptops, mobile phones, and games,...
Computer chips are making lots of things we use every day smarter

But... Everything computers do has to be coded by humans like YOU

As you complete this project-based course, you'll be learning skills that can be used to program ANY computer!

Objective 1 - Behold the CodeX

The computer you'll build projects with is called the CodeX.

The Firia Labs CodeX is a powerful embedded computer.

It has loads of sensors and buttons for input.
With an LCD display, amazing Audio, and tons of LEDs for output.

Even better, the CodeX can connect to the world around it.

Those black connectors along the top edge are electronic terminals you can wire to sensors, motors, lights, and more!
Plus there's an expansion interface to fit additional circuit-boards.

What projects can you imagine using the CodeX for?

Control a light show
Measure sound and light levels
Operate a robot
Generate music and sound effects
Detect motion and activate an alarm
Create handheld video games

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 4 of 295

Goal:

Click at least one of the tools above to learn more about the CodeX.

Tools Found: Display, Audio, LED

Solution:

N/A

Objective 2 - Static Electricity

Careful with your CodeX!
A few precautions will keep it safe!

🚨 🚨 Warning!! 🚨 🚨
Static electricity is a charge ⚡ that can build up when you walk across carpet in socks or take off a wool sweater.

It causes the jolt and spark that happens sometimes when touching something grounded, like a faucet or lightswitch.

Hints:

1. Hold your CodeX by its edges, being gentle with the LEDs and other electronic components.
They're all exposed on the board as with most other Maker computers, so you can really get to know them.

2. Keep your CodeX in its case when not in use.
3. It's good practice to touch some grounded metal (desk, doorknob) before handling the CodeX to avoid damaging its sensitive

components with static electric discharge.

Goals:

Close this Objective panel to view the 3D scene, and click the yellow static electricity lightning bolt at the CPU!

Use your mouse to rotate the view as needed!

Click the lightning bolt at the USB connector!

Click the lightning bolt at the Peripheral Connector!

Solution:

N/A

Quiz 1 - Static Response

Question 1: What should you do before handling a CodeX?

 Touch some grounded metal

 Jumping jacks

 Clean it with wet wipes

Objective 3 - Find the CPU

Where does the code run?
The Central Processing Unit or CPU is the brain of the CodeX.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 5 of 295

CodeX's CPU is in a module with many functions:

1. A microcontroller that executes your code.
2. A FLASH filesystem that stores code and data files.
3. Temporary memory (RAM) for a fast-access scratchpad.
4. There's even a built-in Wi-Fi radio!

The CPU also interacts with all the other components, lights, display, and peripherals.

It collects data, issues commands, and pushes display information.

The CPU is an amazing little device!

Can you find the CPU?

Goal:

Click on the Central Processing Unit (CPU) in the 3D Scene.

Hint: You may need to rotate the camera!!

Tools Found: CPU and Peripherals

Solution:

N/A

Objective 4 - Connect the USB

Now, use the USB cable to connect the CodeX to your computer.

 Note

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 6 of 295

You may see a window pop-up when you plug in the CodeX.

Feel free to close this window; you won't need it for CodeSpace.

Connecting the USB cable does two things:

1. It lets your computer communicate with the CodeX.
2. It provides 5 volt DC power to the CodeX.

Make sure your USB cable is connected now!!

Goal:

Click on the USB connection port in the 3D Scene.

Hint: It is at the bottom of the device!!

Tools Found: USB

Solution:

N/A

Objective 5 - Link to CodeSpace

Link CodeX to your browser so it can be used with CodeSpace
Connection Steps

1. Make sure the USB cable is connected both to your PC and the CodeX.

2. Click the red bar below the code editor to open the Select Target dialog.

The connection bar looks like this:

The bar should look like this if your device is already connected:

3. In the Select Target dialog, click CONNECT.

4. The first time your browser connects to a CodeX it will request permission to connect.

Select CodeX from the device list and click Connect.

Goal:

Link your CodeX to CodeSpace.

Hint: Make sure only one CodeX or CodeBot is connected.

Solution:

N/A

Objective 6 - Save the Code!

Time to create a file!
When you type code into the text editor panel on the left, it is automatically saved to your personal file-system in CodeSpace cloud!

Code is stored in files on a computer just like any other document.

Each code file should have a name that states its purpose.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 7 of 295

You should make a new file for each objective. Here's how:

1. Click the File menu button above the code editor.
2. Click New File...
3. Type in the name you'd like to give your new file.
4. Click the Create button.

Your new file should open in your code editor!!

Goal:

Create a new file named: Heart1

If this file is already in your file system go ahead and use the New File... button anyway!

Double check your capitalization!!

Solution:

N/A

Objective 7 - The CodeTrek

Check out the CodeTrek!!
The CodeTrek is a CodeSpace tool that gives you:

A starting point for your program.
Detailed information about lines of code you need to write.
Explanations of coding topics.
Holes (TODOs) for you to fill in on your own!

TODOs

A # TODO: is an instruction in a code comment.

It tells you to come back here because there is still work TO DO!!
TODOs are used in the real world all the time!

Most code editors recognize # TODO and highlight it in your code!!

Click the CodeTrek button below to learn more about the code for an objective.

CodeTrek:

1 from codex import *

2 # TODO: Show a HEART on the display

Goal:

Open the CodeTrek to learn about your code with the button.

Solution:

N/A

The CodeTrek will give you information about lines of code or give you more knowledge on a topic.

A # TODO: tells you to come back here because there is still work TO DO!!

TODOs are used in the real world all the time!
Most code editors recognize # TODO and highlight the line in your code!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 8 of 295

Quiz 2 - Questions TODO

Question 1: What is the CPU's job on the CodeX?

 Execute your code

 Figure out what you were thinking

 Provide +5 Volt power

Question 2: Which of the following is an instruction in a code comment that you need to replace?

 # TODO: fix this

 # good code below

 # x should be a float

Objective 8 - Show Some Heart!

Now it's time for you to run some code!
 Note
Before you start coding:

Capitalization matters! Your code is case sensitive.
Punctuation is important!

(Relax, you're not going to break anything, but programming languages are very strict!)

Time to Type!!
1. Click on the Code Editor panel to the left.
2. Remove any sample code that is already there.
3. Type in the code from the CodeTrek
4. Run your code using the RUN button.

Hints:

Don't worry about the colors in the Code Editor.
Use two separate lines - be sure to press ENTER after the *!

CodeTrek:

1 from codex import *
2 display.show(pics.HEART)

Hint:

Well, all this punctuation has a purpose.

We are using the codex module - pre-loaded code that makes it easier to do things with the CodeX.

The * means "import everything" from that module (it's called a wildcard).

Goals:

Open the CodeTrek to see the code.

RUN your code to display a HEART on the LCD screen!

Make sure your code matches the CodeTrek!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 9 of 295

Tools Found: Punctuation, Syntax Highlighting

Solution:

1 from codex import *
2 display.show(pics.HEART)

Objective 9 - More Images

The CodeX has many more pics!
This objective needs a different image.

It's just a small change to the code so you will see a # TODO in the change location!!

The CodeTrek keeps you on track.

If you get stuck always refer back to the CodeTrek.

It can help you get back.

Go ahead and modify your program!!!
Edit your code and press Run to test it out.

You can even try a few other images.

Hint
Try pics.TSHIRT!!

CodeTrek:

1 from codex import *
2 # TODO: Show MUSIC on the display

Goal:

RUN your code to show MUSIC on the display!

Always check the CodeTrek!

Tools Found: CodeX Image Pics

Solution:

1 from codex import *
2 display.show(pics.MUSIC)

Mission 2 Complete

You've completed the first project!

...and you're at the start of a fantastic adventure. From this small first project, your journey will take you to greater heights - more
projects are ahead to challenge and amaze you!

A world of possibilities awaits you...

The pics gallery contains many images:

Replace the # TODO with display.show(pics.MUSIC)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 10 of 295

Mission 3 - Light Show
This project explores the CodeX pixel LEDs
Have you ever heard of RGB LEDs?

If not you are in for a real treat!!

The CodeX has a great display, but it also has
10 individual LEDs for you to program!

Four of the LEDs are Smart RGB
LEDs aka Pixel LEDs

Pixel LEDs are powerful Red, Green, Blue
(RGB) lights that can be a lot of fun.

Inside each pixel is a set of 3 discrete LED
components:

Red
Green
Blue

With just 3 colors you can make the whole spectrum!!!

Project Goals:

Show a sequence of colors on the Codex pixels
Vary the speed of color Change

Objective 1 - Find the Pixels

RGB pixels
The CodeX has four Red, Green, Blue (RGB) LEDs along the top edge.

You can set these LEDs to any color under the sun.

The CodeX library gives you a few colors to get started with:

BLACK (this is the same as off!)
WHITE
RED
GREEN
BLUE
YELLOW
CYAN
MAGENTA
ORANGE
BROWN

Can you find the CodeX pixel 0 in the 3d scene?

Goals:

Create a new file named Pixels1

Click on RGB pixel 0 on the CodeX in the 3D scene!

Solution:

N/A

Objective 2 - Turn on the Red Light

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 11 of 295

Start by turning on an RGB pixel!
You can use the following code to set pixel 0 to RED:

from codex import *
pixels.set(0, RED)

The pixels.set() function takes two inputs.

The first is the number of the pixel you want to set
The second is a color

There are some more advanced pixel LED features you can use later.

It's pretty obvious what the pixels.set(0, RED) is telling the CodeX to do.

But what about the from codex import *?

Click to learn more about the import statement.

CodeTrek:

1 from codex import *
2 pixels.set(0, RED)

Goal:

Light up the CodeX pixel 0 the color RED.

Make sure your code matches the CodeTrek!

Tools Found: RGB "pixel" LEDs, import

Solution:

1 from codex import *
2 pixels.set(0, RED)
3

Objective 3 - Two in a Row?

Now display two colors in sequence

 Note
The code in the objective may NOT do what you expect! Read Carefully!

The computer executes your code sequentially

Starting with line 1, the line 2, and so on.
Oh, and... computers are very fast.

When you write code, it often doesn't work the way you planned the first time. Part of the joy of coding is figuring out why - and fixing
it!

Check the CodeTrek for coding hints.

CodeTrek:

1 from codex import *
2 pixels.set(0, RED)

You can set pixels 0 - 3 to many different colors.

Try BLUE or GREEN

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 12 of 295

3 # TODO: set pixel 0 to GREEN

Goal:

Light up pixel 0 RED and then change it to GREEN.

Solution:

1 from codex import *
2 pixels.set(0, RED)
3 pixels.set(0, GREEN)

Objective 4 - What's Going On?

Why is only the last color showing up?
Hey, at least your program did something different! The pixel is now GREEN. But the goal is to see both images clearly, one at a time...

Notice that your program ENDS very quickly

It doesn't wait for you to see the first color before it shows the second one.

CONCEPT: Hardware Peripherals

Hardware that's connected to your CPU can remain active, even after your program ends.
For example, the Pixel LEDs keep shining with the last color you sent them.
Many computer peripherals operate independently of the computer itself!

Theory: Both colors are being displayed, but:

RED is only displayed for a very short time (too fast to see)
GREEN color is the last thing displayed, so the LED keeps showing it even after the program ends.

Now, test this theory with a couple more colors.

CodeTrek:

1 from codex import *
2 pixels.set(0, RED)
3 pixels.set(0, GREEN)
4 # TODO: Set pixel 0 BLUE
5 # TODO: Set pixel 0 WHITE

Goal:

Light up pixel 0 with colors in the following order: RED, GREEN, BLUE, WHITE.

You must use the codex library color keywords.

Tools Found: CPU and Peripherals

ALWAYS Update your # TODO:s!

Also...

You might never see the color RED:
GREEN will show up so fast that the red is lost to your eye.

You can replace these # TODOs with code!

Blue is BLUE
White is WHITE

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 13 of 295

Solution:

1 from codex import *
2 pixels.set(0, RED)
3 pixels.set(0, GREEN)
4 pixels.set(0, BLUE)
5 pixels.set(0, WHITE)

Quiz 1 - Two Images

Question 1: What do you expect the following code to do?

from codex import *
display.show(pics.HEART)
display.show(pics.HAPPY)

 Display each image quickly and end showing the last one

 Display only the first image

 Show the images for about 1 second each

Objective 5 - Find the Bug

Inside the Mind of the Computer!

Computers are fast. Even a small computer like the CodeX can execute millions of operations per second!

The CodeSpace debugger lets you Step your program one line at a time, at your own speed, so you can understand exactly what
the computer is doing and debug your code.

Watch the video below: All the colors are being displayed!

It's easy to see ALL the Pixel colors when the program goes slowly, step-by-step.

NOTE: Each line of code runs after the Step button is clicked.

Find the debug button and prepare for stepping in the next objective!

Goal:

Enter DEBUG mode on the CodeX by pressing the Debug Program button.

Tools Found: Debugging

Solution:

N/A

Objective 6 - Step by Step Colors

Your turn to use the debugger!
This is a very powerful tool for debugging your code. Be sure to use it whenever you need to understand more clearly what the
code is doing!

CONCEPT: Stepping

You can execute the code one line at a time by using the Step In button.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 14 of 295

1
2

Try stepping through your code!

1. Press the Debug button to re-load your program and wait at the first line
2. Then use the Step In button to execute each line of code
3. The highlighted line executes after you click Step In
4. Then the next line of code is highlighted, waiting and ready to goes
5. Check the CodeX pixel after each STEP

CodeTrek:

1 from codex import *
2 pixels.set(0, RED)
3 pixels.set(0, GREEN)
4 pixels.set(0, BLUE)
5 pixels.set(0, WHITE)

Goal:

Use the debugger Step In button to show the different colors.

You will need to hit the debug button again first.

You must step at least 5 times!

Tools Found: Debugging

Solution:

1 from codex import *
2 from time import sleep
3 pixels.set(0, RED)
4 pixels.set(0, GREEN)
5 pixels.set(0, BLUE)
6 pixels.set(0, WHITE)

Objective 7 - Slow it Down

When you step slowly through the code, all the colors show up. So you just need a way to delay the computer a little after it shows
each color.

from time import sleep
sleep(1) # delay for 1 second

Line 2 in the code above will cause the CodeX to delay for 1 second before going to the next line.

Plenty of time to see a new color displayed!!

Update your code!

Add a line with sleep(1) on the next line of code after each pixels.set().

See the CodeTrek if you need help!

CodeTrek:

 1 from codex import *
 2 from time import sleep

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 15 of 295

 3
 4 pixels.set(0, RED)
 5 sleep(1)
 6 pixels.set(0, GREEN)
 7 sleep(1)
 8 pixels.set(0, BLUE)
 9 # TODO: Sleep for 1 second

10 pixels.set(0, WHITE)

Goals:

Import the sleep function from the time module.

Use a whole number in the sleep() function to delay for that many seconds.

Tools Found: Timing

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 pixels.set(0, RED)
 5 sleep(1)
 6 pixels.set(0, GREEN)
 7 sleep(1)
 8 pixels.set(0, BLUE)
 9 sleep(1)
10 pixels.set(0, WHITE)

Objective 8 - Name that Number

Variable Speed?
It would be fun to play with some different delay times. Right now the number 1 appears three times in the code, and all must be
changed to adjust the delay between colors!

Instead of repeating a literal number like 1 in your code, you can use a name instead. Read on to learn how much easier this makes it
to change your delay!

CONCEPT: Variables

A variable is a name to which you assign some data. The data could be a number, a color, or any other type of
information your program uses.

Variables must be defined like this before they are used:

delay = 1

The line of code above defines a variable delay that can now be used anywhere in the program below it, in place of 1. The
best part is, you can now change that value in one place in your code!

Now that you're up to speed - it's time to...

Update your code!

Make sure you add the from time import sleep

This lets you call sleep() in your code!!

Sleep takes a delay time in seconds.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 16 of 295

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # TODO: Create a variable named delay

 5
 6 pixels.set(0, RED)
 7 sleep(delay)
 8 pixels.set(0, GREEN)
 9 sleep(delay)
10 pixels.set(0, BLUE)
11 # TODO: Sleep for the delay

12 pixels.set(0, WHITE)

Goals:

Use a variable called delay to set your time delay.

Use the delay variable in the sleep() function.

Tools Found: Variables, Assignment

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 delay = 1
 5
 6 pixels.set(0, RED)
 7 sleep(delay)
 8 pixels.set(0, GREEN)
 9 sleep(delay)
10 pixels.set(0, BLUE)
11 sleep(delay)
12 pixels.set(0, WHITE)

Quiz 2 - Variable Questions

Question 1: What does from codex import * do?

 Provides access to built-in codex code

 Turns on the codex LEDs

 Imports asterisks from the land of codex

Question 2: What does delay = 1 do?

 Assigns the value 1 to a variable named 'delay'

 Delays execution for 1 second

Add the delay variable:

delay = 1

Use your new delay in all your sleep() calls!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 17 of 295

 Puts the CPU into sleep mode for 1 second

Objective 9 - Warning Sign

Light em all!!
Time to light up all the pixel LEDs!

And you are going to create a flashing warning sign!!

pixels.set() can be used to light all 4 pixels.

You can also set a variable to a color.

Later in your program you can change the value of the color variable!

One way to set all pixels to the same color is like this:

color = RED
pixels.set(0, color)
pixels.set(1, color)
pixels.set(2, color)
pixels.set(3, color)

Finish this project by flashing between RED and YELLOW on all 4 pixels.

Make sure to put a delay between flashes!

Wanna copy some code?

You can use the Editor Shortcuts to copy and paste lines of code!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 delay = 1
 5
 6 # TODO: Set a variable called color to RED

 7 pixels.set(0, color)
 8 pixels.set(1, color)
 9 pixels.set(2, color)
10 pixels.set(3, color)
11
12 sleep(delay)
13
14 # TODO: Change the color variable to YELLOW

15 pixels.set(0, color)
16 pixels.set(1, color)
17 pixels.set(2, color)
18 pixels.set(3, color)
19
20 sleep(delay)

You can set a variable to anything.

Even a color!!

color = RED

Now change colors

You can use YELLOW to contrast with the RED...

Or check out the Hints for how to create custom colors!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 18 of 295

21
22 color = RED
23 pixels.set(0, color)
24 pixels.set(1, color)
25 pixels.set(2, color)
26 pixels.set(3, color)
27
28 sleep(delay)
29
30 color = YELLOW
31 pixels.set(0, color)
32 pixels.set(1, color)
33 pixels.set(2, color)
34 pixels.set(3, color)

Hints:

Longing for a Loop ?

This objective repeats a block of code multiple times!

There is a concept we will cover soon that allows you to repeat things much more neatly - loops.

For now just copy and paste the code a few times!

Custom Colors ?
The standard set of colors you've used so far are actually just constants defined in a Python module.

You can define your own special colors based on red/green/blue combinations. Check out the RGB Colors tool for more on
that!

Goals:

Create a second variable called color and set it to the RED color from the codex library.

Use the color variable as the second argument in the pixels.set() function.

Tools Found: RGB "pixel" LEDs, Variables, Timing, Editor Shortcuts, Keyword and Positional Arguments

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 delay = 1
 5
 6 color = RED
 7 pixels.set(0, color)
 8 pixels.set(1, color)
 9 pixels.set(2, color)
10 pixels.set(3, color)
11
12 sleep(delay)
13
14 color = YELLOW
15 pixels.set(0, color)
16 pixels.set(1, color)
17 pixels.set(2, color)
18 pixels.set(3, color)
19
20 sleep(delay)
21
22 color = RED

This code is getting long...

Soon you will learn how to shorten this up!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 19 of 295

23 pixels.set(0, color)
24 pixels.set(1, color)
25 pixels.set(2, color)
26 pixels.set(3, color)
27
28 sleep(delay)
29
30 color = YELLOW
31 pixels.set(0, color)
32 pixels.set(1, color)
33 pixels.set(2, color)
34 pixels.set(3, color)

Mission 3 Complete

You can set the pixels to any color you want!
There are so many ways to create fun lighting schemes.

Lights like these are used in so many applications in the real world

Traffic lights
Stadium scoreboards
Concert special effects
Smart home lighting

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 20 of 295

Mission 4 - Display Games
This project explores the display
From car dashboards to giant stadium scoreboards, you see LED displays
everywhere, and most of them are controlled by software.

The CodeX display is small, but with your code, it can do a lot!

Project Goals:

Display and print text message strings
Program buttons to determine whether they are pressed
Make a timed find a button game

Objective 1 - Back to the Display

You are going to build a game...
But you should practice showing another image on the display first.

Remember how to show an image?

display.show(pics.PLANE)

If you are confused click on the CodeTrek button!

CodeTrek:

1 from codex import *
2 display.show(pics.PLANE)

Goals:

Create a New File named Display.

Show a PLANE on the display.

Just give display.show() one argument, pics.PLANE from the CodeX pics library.

Tools Found: Keyword and Positional Arguments, CodeX Image Pics

Solution:

1 from codex import *
2 display.show(pics.PLANE)

Objective 2 - Text Messages

Not my type...

You've shown lots of images on the display. But can it also display text?

Experiment to see if display.show() can show "text", and not just image data.

CONCEPT: Data Types

Your code already works with Data types:

pics.PLANE - a CodeX image type
1 - an integer type

The type for text like "Hello" is called string

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 21 of 295

"Hello" - a string type
(Strings must be in quotation marks)

Try to make the CodeX display a text string message!

CodeTrek:

1 from codex import *
2 display.show("Ahoy")

Goal:

Use the string "Ahoy" inside the display.show() function.

Tools Found: Data Types, CodeX Image Pics, int, str, bool

Solution:

1 from codex import *
2 display.show("Ahoy")

Objective 3 - Good With Numbers?

Fancy a Bit o' Maths?
You might have heard that computers are good at doing mathematics. Time to put that to the test!

Assigning a Calculation

You already know how to define a variable.

Previously you assigned a literal 1 to a variable name "delay".
Now try assigning a simple calculation to a variable, and display the result!

Change your program to calculate num and display.show() the result.

Keep it simple for now:

num = 2 + 2

...What could go wrong?

 Note
Unexpected Result Ahead...

You will see a TypeError when you Run this code!!!

Complete this Objective by causing the error - next Objective will fix it!

CodeTrek:

1 from codex import *
2 num = 2 + 2

You can use display.show() to draw a text message on the display!

num is a variable that is set to an integer

2 + 2 is the same as 4

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 22 of 295

3 display.show(num)

Hint:

What's the Error?

When you run the code, an error message will appear. That's because display.show() only works for certain types of data -
like strings.

Your code gave a number (an Integer or int type) to display.show(), producing an error.

Don't worry, you'll fix this error in the next Objective!

Goal:

Try to display.show() an integer.

This will cause a TypeError.

Tools Found: Variables, int

Solution:

1 from codex import *
2 num = 2 + 2
3 display.show(num)

Objective 4 - Converting Types

Fix it Up!
You've discovered display.show() doesn't work with integer types.

But you know it does work with strings.
Fortunately, Python makes it easy to convert back and forth between these types!

CONCEPT: Data Type Conversions

str(n) Convert 'n' to a String
int(s) Convert 's' to an Integer

Now modify your program:

Replace display.show(num) with display.show(str(num))

CodeTrek:

1 from codex import *
2 num = 2 + 2
3 # TODO: show num after converting to a string

So the num variable contains 4

Use display.show() to show the integer.

This may not work how you expect!!

You can use the str() function to convert your num variable.

display.show(str(num))

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 23 of 295

Goal:

Convert the num variable to a string using the str() function.

Tools Found: int, str, Data Types

Solution:

1 from codex import *
2 num = 2 + 2
3 display.show(str(num))

Objective 5 - Second Show Message

Can you display two messages?
Use the display.show() function to show two strings.

display.show("Hello")
display.show("World")

 Note: You may not get the result you expect here!

CodeTrek:

1 from codex import *
2 display.show("Hello")
3 # TODO: show a second message

Goal:

Now use display.show() to show a second line of text on the display.

You need to call the function twice!

Tools Found: str

Solution:

1 from codex import *
2 display.show("Hello")
3 display.show("World")

Objective 6 - Printing Text

Oh no! We've seen this problem before.
The display.show() function shows one string at a time. It will overwrite any text that was there.

That's okay, but we don't always want to lose our messages.
You could use the debugger to see the two messages.

Give it a try - are they both printing when you STEP through the code?

BUT CodeX has a better way to show text messages

Change your program to use print instead of show.

Use the display.show() function to show a second string on the display.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 24 of 295

display.print("Hello")
display.print("World")

Try your skills
Play around with some different messages of your choice.

The computer doesn't care what text you put inside the quotes
Except for some symbols which require Escape Sequences

CodeTrek:

1 from codex import *
2 display.print("Hello")
3 # TODO: "print" a 2nd text message to the display

Goal:

Now use display.print() to show two lines of text on the display.

You need to call the function twice!

Tools Found: str, Advanced Debugging, Escape Sequences

Solution:

1 from codex import *
2 display.print("Hello")
3 display.print("World")

Quiz 1 - Typed

Question 1: Which of the following is NOT a standard Python type?

 'text'

 'int'

 'str'

Question 2: What will happen if you run this code?

from codex import *
display.show(8)

 The program will error

 The display will show an 8

 An 8 will be shown below any text already on the screen

Objective 7 - Branching

The final stage of this project is to make a GAME that works like this:

You need to use display.print() here.

display.show() will just overwrite your old string.
display.print() can show multiple lines of text.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 25 of 295

The display will tell you which button to press.
You will have 1 second to press and hold the correct button.
If you are holding the button within 1 second a pixel will light up GREEN!

The first step is to light up a pixel

Here's the plan:

If a specific button was pressed then
A pixel turns GREEN

Otherwise,
That pixel turns RED

In Python code it looks like (don't type this yet)

if pressed:
 pixels.set(0, GREEN)
else:
 pixels.set(0, RED)

Your code will take a different branch depending on the value of pressed

CONCEPT: Branching

The if condition statement tells Python to only run the block of code indented beneath it if the boolean condition is
True.

Okay, there's a lot of information to take in above! (...take your time)

Actually just watching the code run will help you understand the if statement

Go ahead - type in the code from the CodeTrek and try stepping through it!
Be careful with the indentation on lines after if: and else: statements.
A colon : always precedes an indented block of code.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 sleep(1)

 5 pressed = True

 6 if pressed:
 7 pixels.set(0, GREEN)

 8 else:
 9 pixels.set(0, RED)

Sleep for 1 second waiting on the user to press and hold a button.

For now just simulate the button is pressed

Make your variable equal to the bool True

You can try it out with False as well!!

Set pixel 0 to GREEN if the button is pressed at the end of 1 second.

Don't forget to indent your code!!

Set pixel 0 to RED if the button is not pressed at the end of 1 second.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 26 of 295

Goals:

Set a variable named pressed equal to the boolean True.

Use an if statement in your code followed by an else statement.

if pressed is True go GREEN

...otherwise go RED

Tools Found: Branching, Indentation, bool, Variables

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 sleep(1)
 5 pressed = True
 6 if pressed:
 7 pixels.set(0, GREEN)
 8 else:
 9 pixels.set(0, RED)

Objective 8 - Button Hunting

The second step is to find the buttons!
Search the 3D scene for the different buttons!

BTN_A is Button A
BTN_B is Button B
BTN_L is the Left Button
BTN_U is the Up Button
BTN_R is the Right Button
BTN_D is the Down Button

Click each button and Watch the Goals turn GREEN

Keep your eyes on the Goals HUD at lower left of 3D panel!

Goals:

Click on BTN_A (button A) in the 3D Scene.

Click on BTN_B (button B) in the 3D Scene.

Click on BTN_L (button L) in the 3D Scene.

Click on BTN_U (button U) in the 3D Scene.

Click on BTN_R (button R) in the 3D Scene.

Click on BTN_D (button D) in the 3D Scene.

Solution:

N/A

Objective 9 - Gamer Input

Gotta grab some User Input for your game!

There are a few different ways to access the CodeX buttons, including:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 27 of 295

buttons.was_pressed(BTN_A) True if button has been pressed since last check

buttons.is_pressed(BTN_A) True if button is currently pressed

Now it's time to button this thing up!

You will need to check IF your button is pressed.

Use Button A for your first test!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 display.show("Hold Button A")

 5 sleep(1)
 6 pressed = buttons.is_pressed(BTN_A)

 7 if pressed:
 8 pixels.set(0, GREEN)
 9 else:
10 pixels.set(0, RED)

Goals:

Replace the "hard coded" pressed value True with a button function:

Use the buttons.is_pressed() function with BTN_A as the argument.

Set pixel 0 inside your if statement.

Your code already does this, I think...

Tools Found: CodeX Buttons, Keyword and Positional Arguments, Timing

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 display.show("Hold Button A")
 5 sleep(1)
 6 pressed = buttons.is_pressed(BTN_A)
 7 if pressed:
 8 pixels.set(0, GREEN)
 9 else:
10 pixels.set(0, RED)
11

Quiz 2 - Buttons

Question 1: What code will tell me if the UP button is currently pressed?

 buttons.is_pressed(BTN_U)

Tell the game player which button they need to hold before the 1 second delay starts.

That gives them the chance to find it!

Set your variable to the value of buttons.is_pressed(BTN_A)

Try out BTN_A first but later you will have multiple buttons!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 28 of 295

 buttons.is_pressed(BTN_D)

 buttons.was_pressed(BTN_U)

Question 2: What will happen if you run this code?

x = False
if x:
 display.show('if')
else:
 display.show('else')

 'else' will print on the display

 Your program will error

 'if' will print on the display

Objective 10 - For The Win!

All the pieces are in place
Now, just check a few more buttons and you've got a serious twitch game!

You can use whichever buttons you want.

Game Play Sequence

1. Screen prompts the user with first button to press... hurry!
2. Good press - yay! GREEN light.
3. Screen prompts with second button... FAST!
4. Oops - didn't get there in time. RED light.
5. ...repeat for third and fourth buttons.

All four LEDs GREEN for the WIN!!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 display.show("Hold Button A")
 5 sleep(1)
 6 pressed = buttons.is_pressed(BTN_A)
 7 if pressed:
 8 pixels.set(0, GREEN)
 9 else:
10 pixels.set(0, RED)
11
12 display.show("Hold Button U")

13 sleep(1)
14 pressed = buttons.is_pressed(BTN_U)

15 if pressed:
16 pixels.set(1, GREEN)

Previously you waited for BTN_A.

Now add a step to wait for another button.
You should do this for all 4 pixels on the CodeX!

Use the Editor Shortcuts to make this easier!

You don't need to use BTN_U but that is a good starting point!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 29 of 295

17 else:
18 pixels.set(1, RED)

19
20 # TODO: Add a 3rd button
21
22 # TODO: Add a 4th button

Goals:

Check for 4 different buttons.is_pressed().

You need to call the function 4 separate times.

Set each pixel inside an if statement.

Be sure to light up all 4 pixels: 0, 1, 2, and 3

Tools Found: Timing, Editor Shortcuts

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 display.show("Hold Button A")
 5 sleep(1)
 6 pressed = buttons.is_pressed(BTN_A)
 7 if pressed:
 8 pixels.set(0, GREEN)
 9 else:
10 pixels.set(0, RED)
11
12 display.show("Hold Button U")
13 sleep(1)
14 pressed = buttons.is_pressed(BTN_U)
15 if pressed:
16 pixels.set(1, GREEN)
17 else:
18 pixels.set(1, RED)
19
20 display.show("Hold Button L")
21 sleep(1)
22 pressed = buttons.is_pressed(BTN_L)
23 if pressed:
24 pixels.set(2, GREEN)
25 else:
26 pixels.set(2, RED)
27
28 display.show("Hold Button B")
29 sleep(1)
30 pressed = buttons.is_pressed(BTN_B)
31 if pressed:
32 pixels.set(3, GREEN)
33 else:
34 pixels.set(3, RED)

Mission 4 Complete

Make sure you are setting pixel 1 this time.

Each button input should set the next pixel!!
At the end all 4 pixels should be lit either GREEN or RED.

Add a 3rd and 4th button input to your game.

Don't forget to set a different pixel each time!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 30 of 295

Python is great for coding games
and you're just getting started!

You'll soon discover a lot more possibilities as you learn more about the CodeX, and learn to
build more complex software with text-based code.

Real World Applications

Reading buttons and controlling LEDs... Not to mention making split-second timing decisions!

Ever used a remote control?
How about smart lighting applications for homes and schools?
And of course, fast-twitch button-press games :-)

This kind of code is all around you!

Nice work!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 31 of 295

Mission 5 - Micro Musician
Musicians often use computers to help create music

Drum Machines
Keyboard synthesizers
Recording and Mixing with Digital Audio Workstation (DAW) Software
...lots more ways - can you think of some?

This is a short project, just to give you a taste of what the CodeX can do in the
area of electronic music.

As with the display, your software can take complete control over the output of the CodeX, and in future projects you will do more
customization!

Project Goals:

Play some of the CodeX's built-in sounds
Learn about some code formatting to improve your code's readability

Ready to make some noise?

Objective 1 - Sound Outputs

The CodeX has two places to output sounds
You can listen to music through the speaker, or
You can plug headphones into the headphone jack

Speakers and headphones work by converting electrical signals into mechanical waves.

Your Python code can control sound output using the audio functions.

Play sound files, beep tones, control volume, and more!
Check out the audio help in your toolbox for all the details.

Goals:

Find the CodeX speaker in the 3D view.

Find the CodeX Headphone Jack in the 3D View.

Tools Found: Audio

Solution:

N/A

Objective 2 - Micro Tunes

Now it's time to write code to play some sounds!
When you do from codex import * you get access to the audio object.

The audio object gives you lots of sound tools!

You are going to start by playing an mp3 file.
An mp3 is just an audio file in the mp3 format.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 32 of 295

Your CodeX has a few sample mp3 files already loaded!

Here is an example:

from codex import *
audio.mp3("sounds/welcome")

That's pretty simple code!

Using the CodeX audio library you can play recorded sounds or create your own custom music!

CodeTrek:

1 from codex import *
2 audio.mp3("sounds/welcome")

Goals:

Create a new file named "Music1".

Use the CodeX library's audio.mp3() function to play a song.

Tools Found: Audio

Solution:

1 from codex import *
2 audio.mp3("sounds/welcome")

Objective 3 - Clean Code

Good code is easy to read (by humans, not just computers!)
As your programs get longer, take care to make them readable.

You can add blank lines anywhere in your code to separate portions without affecting how it works.
The computer ignores blank lines.

Try adding a blank line in between your lines of code.

Update your code to look like this:

from codex import *

audio.mp3("sounds/welcome")

Try running your code and make sure it works the same as before!

CodeTrek:

1 from codex import *
2

3 audio.mp3("sounds/welcome")

Goal:

Use the audio.mp3 function to play a song on the CodeX.

This is the easiest way to get started with music!!

Add a blank line here just to improve readability.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 33 of 295

Add a blank line to your code!

Tools Found: Blank Lines and Whitespace, Readability

Solution:

1 from codex import *
2
3 audio.mp3("sounds/welcome")

Objective 4 - Once More, With Feeling

You don't want the display to be dark while those inspiring tunes are playing!

Why don't you show pics.MUSIC !!

You may want to spend more time experimenting with the built-in CodeX sound collection...

In a future lesson, you will learn how to create your own tunes.

Here are some of the songs already loaded in Codex sound:

"africa.mp3"
"techstyle.mp3"
"shire.mp3"

and of course,

"roll.mp3"

Go ahead ahead try some different songs after you complete this objective!

CodeTrek:

1 from codex import *
2
3 display.show(pics.MUSIC)
4 # TODO: Play the africa.mp3 song

Hint:

Remember to use the "sounds/..." path to load built-in sounds.

Example:
audio.mp3('sounds/roll')

Goals:

Show the pics.MUSIC on the CodeX display.

Play the "africa.mp3" song from the CodeX music collection.

You can omit the .mp3 extension on the filename if you prefer.

Tools Found: CodeX Sound Collection

Solution:

Use the audio.mp3() function here.

The audio object comes from the codex library.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 34 of 295

1 from codex import *
2
3 display.show(pics.MUSIC)
4 audio.mp3("sounds/africa")

Objective 5 - Comments

Readability and Comments
As you write code, imagine that someone who has never seen it before will have to read it and figure it out.

A year from now, you might even pick up your own code and say: "what was I thinking!?"

Readability: Making code easy to understand for humans.

Use descriptive variable names
Use Comments - notes in the code about what you're doing

In Python, anything that follows a # to the end of the line

... is a comment, meaning it is ignored by the computer.

Check the CodeTrek for some comments.

In the following projects, you can decide if you want to type in the comments provided in the lessons, or
omit them.

Feel free to add your own comments, to help you understand and remember what your code was meant to do!

CodeTrek:

1 from codex import *
2
3 # Display the music.

4 display.show(pics.MUSIC)
5
6 # TODO: Add your own comment here.

7 audio.mp3("sounds/roll")

Goal:

Add 2 comments to your code, and RUN it again!

Tools Found: Readability, Comments

Solution:

1 from codex import *
2
3 # Display the music
4 display.show(pics.MUSIC)
5
6 # Your own comment here
7 audio.mp3("sounds/roll")

Quiz 1 - Readable Quiz

This is what a comment looks like.

Note that per the Python style guide the first letter is capitalized, and it ends with a period.

Replace the # TODO with your own comment!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 35 of 295

Question 1: Choose the two places that the CodeX can output sound.

 The Headphone Port

 The Speaker

 The Display

 The USB Port

Question 2: Which of these is NOT a tool to make your code more readable?

 Variable names without meaning (like x)

 Blank lines in your code

 Comments that explain your code

Objective 6 - Portable MP3s

After your code is running on the CodeX.

You can go unplugged!

Your projects don't need a computer attached after coding.

What will you create with this portable power?

🚨 🚨 Warning!! 🚨 🚨
Be Gentle with Cables!
When you unplug a cable, DO NOT PULL on the wire!

Hold the connector firmly when you disconnect and connect.

Take it for a Spin
1. Download your code to the CodeX
2. Disconnect your CodeX from the USB cable
3. Flip the BATT switch to position 1
4. Wait a few seconds for the program to start...
5. (Did you put batteries in your CodeX?!?!)

The CodeX is an embedded computer - meaning you can build it into other projects to sense and control stuff in the physical world!

Goal:

Click on the BATT switch in the 3D scene!

Hint: You may need to turn the CodeX around and click on it from behind!

Solution:

N/A

Mission 5 Complete

You can do MUCH more with sounds on the CodeX

In future lessons, you will explore more capabilities AND compose your own songs!

Well done! Move ahead to more coding fun...

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 36 of 295

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 37 of 295

Mission 6 - Heartbeat
In this project you'll give the CodeX a beating heart.
Okay, not a real heart - that would be a little too messy!

But using the display you can give the CodeX its own digital heart, and even
make it speed up and slow down just like your own heart does.

Project Goals:

Code an animated heartbeat, pulsing on the LED display
Learn how to make your code LOOP forever

And how to break out of it!
Make the heartbeat speed adjustable using the CodeX buttons

A = slower and B = faster

Objective 1 - Lots of Heart

Show a heart on the screen!

You might recognize this as the same code as your first project.

Don't worry, you're going to add a lot of new features soon!

CodeTrek:

1 from codex import *
2
3 display.show(pics.HEART)

Goals:

Create a new file named Heart2.

Show pics.HEART on the CodeX display.

Solution:

1 from codex import *
2
3 display.show(pics.HEART)

Objective 2 - Pump It UP

To make a Heartbeat animation, the display needs to alternate between two images:

The first image you're already showing, pics.HEART
... then switch to pics.HEART_SMALL

Each beat will be a big / small cycle, to make the Heart appear to pulse!

In this step, you should start with a single beat.

 Note
Remember from the previous lesson that you need a delay if you want to see the first heart!

The computer will not delay for you!!!

CodeTrek:

 1 from codex import *
 2 from time import sleep

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 38 of 295

 3
 4 display.show(pics.HEART)
 5 sleep(1)

 6
 7 # TODO: Show pics.HEART_SMALL

 8 sleep(1)

Goals:

Show the larger pics.HEART on the CodeX display.

Show the smaller pics.HEART_SMALL on the CodeX display.

Add a delay to your code!

Tools Found: Timing

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 display.show(pics.HEART)
 5 sleep(1)
 6
 7 display.show(pics.HEART_SMALL)
 8 sleep(1)

Objective 3 - Animated Beats

Repeat da Beat
Now that you have a single beat, can you make it repeat?

Go ahead, change your code to make the HEART beat several times!

(no need to repeat from codex import * - you only need that once!)

Just repeat these lines in your code a few more times:

display.show(pics.HEART)
sleep(1)

display.show(pics.HEART_SMALL)
sleep(1)

Fingers tired of typing? Learn about the Editor Shortcuts!

You need to import sleep from the time module.

This lets you access the sleep() function.

Add a delay for 1 second.

Use display.show() to show pics.HEART_SMALL.

Add a second delay at the end.

You will need this in the next step!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 39 of 295

Run your program

You can code a few beats this way, but the program would get really long if you had to copy/paste the code to make the heartbeats
go on much longer!

...there must be a better way!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # first beat
 5 display.show(pics.HEART)
 6 sleep(1)
 7
 8 display.show(pics.HEART_SMALL)
 9 sleep(1)
10
11 # second beat
12 # TODO: Repeat the heartbeat

Goal:

Use display.show() followed by a sleep() at least 4 times in your program.

Tools Found: Editor Shortcuts

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # first beat
 5 display.show(pics.HEART)
 6 sleep(1)
 7
 8 display.show(pics.HEART_SMALL)
 9 sleep(1)
10
11 # second beat
12 display.show(pics.HEART)
13 sleep(1)
14
15 display.show(pics.HEART_SMALL)
16 sleep(1)

Objective 4 - Hearts Forever

A few beats is a good start...

But your Heartbeat animation needs to run forever!

Instead of copying the same code over and over and over... there must be a way to tell the computer to just repeat that code!

YES there is!

It's called a LOOP.

Open the CodeTrek. It shows your original code inside a while True loop.

Can you tell what this code might do?

Study the definitions below, then run that code

Repeat these the HEART beat animation a few times.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 40 of 295

CONCEPT: While Loops

A while condition: statement tells Python to repeat the block of code indented beneath it as long as the given
condition is True.

The CodeTrek uses the literal value True as the condition, so we have an infinite loop - one that never ends, because
True is always... True!

Now it's your turn. To infinity and beyond!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:

 6 display.show(pics.HEART)

 7 sleep(1)
 8
 9 display.show(pics.HEART_SMALL)
10 sleep(1)

Goals:

Add a while True loop to your code.

Make sure you indent properly for your loop!

You must have 4 spaces or a single tab for your indent!!

Tools Found: Loops, Indentation, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 sleep(1)
 8
 9 display.show(pics.HEART_SMALL)
10 sleep(1)

Objective 5 - Stop It!

Now that your program doesn't just run straight through and finish, you need a way to STOP it...

This is the infinite loop!

Notice the indentation here.

Use the TAB key on your keyboard to indent code.
That's the same as 4 spaces, but easier

All the indented lines below the while loop are IN the loop.

Notice you only need ONE big/small "cycle" in the loop!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 41 of 295

Click the STOP button to exit your running code.

You might have noticed that CodeSpace automatically stopped your code when you moved to the next Objective. But you can stop
and start on your own also!

Feeling the Need for Speed??

Want to make the HEART beat faster? ...or slower?

All you have to do is change the sleep(1) to a different delay.

Click the STOP button so you can edit your code!

Now, play around with a few different values, like sleep(2).
...or sleep(0.5)

Run and then Stop your program a few times, trying different speeds until you're ready to move on.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 sleep(1)
 8
 9 display.show(pics.HEART_SMALL)
10 sleep(1)

Goals:

Use the infinite while True loop in your program.

Use the STOP Button to stop your running program.

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 sleep(1)
 8
 9 display.show(pics.HEART_SMALL)
10 sleep(1)

Objective 6 - Heart Break

Now that you have coded an infinite loop and learned how to manually stop it, you're
probably wondering: "is there a way to break out of it with code?"

Glad you asked! To break out of a loop, use a statement called... wait for it...

break

Your new assignment:

Program one of the CodeX buttons as a "kill switch" to stop the ever-beating
heart.

Add an if statement inside your while loop.

It should check if BTN_A was pressed.

if buttons.was_pressed(BTN_A):
 break

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 42 of 295

Be sure to indent the if at the same level as the sleep().

The if block will have a second level of indentation.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 sleep(1)
 8
 9 display.show(pics.HEART_SMALL)
10 sleep(1)
11
12 # If BTN_A pressed exit the loop
13 if buttons.was_pressed(BTN_A):

14 break

Hint:

Check your indentation levels
Refer to the CodeTrek...

Mind The Gap!
Goals:

Add an if statement with a break inside your while loop.

Use the buttons.was_pressed() function to check BTN_A.

Tools Found: Break and Continue, CodeX Buttons, Indentation

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 sleep(1)
 8
 9 display.show(pics.HEART_SMALL)
10 sleep(1)
11
12 # If BTN_A pressed exit the loop
13 if buttons.was_pressed(BTN_A):
14 break

Objective 7 - Explore the Beat

Use an if statement inside the while loop.

Check if BTN_A was pressed!!

The break will exit the loop.

Make sure you indent again after the if!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 43 of 295

Now your CodeX is interactive!

And your coding skills are growing.

In the previous Objective you worked with two concepts: input and branching.
That enabled your code to do something different when a button was pressed.

Review Concepts

Branching with an if statement:

The if condition statement tells Python to only run the block of code indented beneath it if the condition is True.

CodeX Button input:

The buttons.was_pressed(BTN_A) function will return True if Button A on the CodeX was pressed since the last time the
function was called.

Now Step Into Your Code!
Experiment with this code until you really understand how it works.

Stop the code, then use the Step Over button to run it one line at a time.

Press Button A while the program is paused on a line, then Step and watch what happens next time
buttons.was_pressed(BTN_A) runs.

See how the computer follows a different branch of the code based on the if?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 sleep(1)
 8
 9 display.show(pics.HEART_SMALL)
10 sleep(1)
11
12 # If BTN_A pressed exit the loop
13 if buttons.was_pressed(BTN_A):
14 break

Goal:

Use the debugger Step Over button to watch the branching in action!

You will need to hit the debug button first.

You must step at least 8 times!

Tools Found: Branching, Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 sleep(1)
 8
 9 display.show(pics.HEART_SMALL)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 44 of 295

10 sleep(1)
11
12 # If BTN_A pressed exit the loop
13 if buttons.was_pressed(BTN_A):
14 break

Quiz 1 - Break-fast Time

Question 1: What happens if you press button 'A' when stepping?

while True:
 if buttons.was_pressed(BTN_A):
 break

 Next buttons.was_pressed(BTN_A) will be True

 Next buttons.was_pressed(BTN_A) will be False

 Buttons are ignored when stepping and paused

Question 2: What does the break statement do?

 Breaks out of a loop.

 Crashes the program.

 Causes the code to stop.

 Jumps over the next line of code.

Objective 8 - Half a Sleep

Are you feeling the excitement?!

Without a doubt, the CodeX's heart should be racing by now - there's a new coder on the scene!

...but it's going to take more coding on your part to make its heart beat faster.

What controls the speed in our code so far?
sleep(1)

The number controlling the speed is 1

That's a 1 second sleep.
To beat twice as fast, you could cut the delay in half.

But how do you do that?

It turns out that the sleep() function can take a float parameter.

CONCEPT: Float Type

You have previously learned about a few different types.

You learned about int, string, and bool.

There is another type called float. A float is a real number with a decimal point so it can hold a fraction.

This is an example of a float variable: pi = 3.14159

Ok so how do I cut the delay in half?

You could use:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 45 of 295

sleep(0.5)

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 # TODO: Add a sleep with 0.5
 8
 9 display.show(pics.HEART_SMALL)
10 # TODO: Add a sleep with 0.5
11
12 # If BTN_A pressed exit the loop
13 if buttons.was_pressed(BTN_A):
14 break

Goal:

Use a sleep() with 0.5 as the parameter to speed up your heartbeat.

Tools Found: Timing, float, Data Types, int, str, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Keep displaying beats forever
 5 while True:
 6 display.show(pics.HEART)
 7 sleep(0.5)
 8
 9 display.show(pics.HEART_SMALL)
10 sleep(0.5)
11
12 # If BTN_A pressed exit the loop
13 if buttons.was_pressed(BTN_A):
14 break

Objective 9 - Variable Speed Control

You learned how to speed up the beat.

But you want to be able to change the speed with a button...

You are going to need a variable!!

Concept Review: Variables

To define a variable:

choose a name like delay
assign a value to it like delay = 1.0
use delay in your code just like any other value!

Notice in the code snippet below you declare a variable delay and use it instead of the literal 1.0

delay = 1.0
sleep(delay)

CodeTrek:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 46 of 295

 1 from codex import *
 2 from time import sleep
 3
 4 # Variable to control beat speed
 5 # TODO: Create your delay variable here

 6
 7 # Keep displaying beats forever
 8 while True:
 9 display.show(pics.HEART)
10 sleep(delay)

11
12 display.show(pics.HEART_SMALL)
13 # TODO: Use delay in the sleep function

14
15 # If BTN_A pressed exit the loop
16 if buttons.was_pressed(BTN_A):
17 break

Goals:

Create a variable called delay and set it to 1.0.

Replace every sleep(0.5) in your code with sleep(delay).

Tools Found: Variables

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Variable to control beat speed
 5 delay = 1.0
 6
 7 # Keep displaying beats forever
 8 while True:
 9 display.show(pics.HEART)
10 sleep(delay)
11
12 display.show(pics.HEART_SMALL)
13 sleep(delay)
14
15 # If BTN_A pressed exit the loop
16 if buttons.was_pressed(BTN_A):
17 break

Objective 10 - Brake! Not "break"...

Your heartbeat speed is easy to change

But only by modifying the code

...and the CodeX won't always be connected to your PC.

Create the delay variable:

delay = 1.0

Change your sleep() to use the new delay variable.

Add the second sleep() for delay.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 47 of 295

You need to change the heartbeat while it's running - unplugged!

Can you make the speed change using buttons A and B?

Check out the code snippet below (but don't type it in yet!)

if buttons.was_pressed(BTN_A):
 delay = delay + 0.2

Rather than break when BTN_A is pressed, the above code:

1. Adds 0.2 to the original delay value.
2. Stores this new value 1.2 back in delay

So every time BTN_A is pressed 0.2 seconds is added to delay.

Ready to try it?

Your first goal is to slow down the heartbeat with Button-A.

Test Your Code
Note: The button is only checked once per loop, so faster clicks are ignored...

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Variable to control beat speed
 5 delay = 1.0
 6
 7 # Keep displaying beats forever
 8 while True:
 9 display.show(pics.HEART)
10 sleep(delay)
11
12 display.show(pics.HEART_SMALL)
13 sleep(delay)
14
15 # If BTN_A pressed go slower
16 if buttons.was_pressed(BTN_A):
17 # TODO: slow down your beat

Goal:

Remove the break and instead use delay = delay + 0.2 inside your if statement.

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Variable to control beat speed
 5 delay = 1.0
 6
 7 # Keep displaying beats forever
 8 while True:
 9 display.show(pics.HEART)
10 sleep(delay)
11
12 display.show(pics.HEART_SMALL)
13 sleep(delay)
14
15 # If BTN_A pressed go slower

⇒ 1.0 + 0.2 = 1.2

You can slow the HEART beat by increasing the delay:

delay = delay + 0.2

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 48 of 295

16 if buttons.was_pressed(BTN_A):
17 delay = delay + 0.2

Objective 11 - Variable Speed Heart

Now increase your heart-rate using Button-B

Be sure to subtract from delay when BTN_B is pressed!

Try running your code

Watch the CodeX get stoked when you press BTN_B a few times, and calm it back down with BTN_A!

🚨 🚨 Warning!! 🚨 🚨
Whoa! What's up with the error when the speed gets fast?

When your delay variable gets below 0 your program will error!!

The sleep() function can only take positive + values.
Negative - values will cause an error.
Try it out!!

Can you make the heart beat FASTER and SLOWER?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Variable to control beat speed
 5 delay = 1.0
 6
 7 # Keep displaying beats forever
 8 while True:
 9 display.show(pics.HEART)
10 sleep(delay)
11
12 display.show(pics.HEART_SMALL)
13 sleep(delay)
14
15 # If BTN_A pressed go slower
16 if buttons.was_pressed(BTN_A):
17 delay = delay + 0.2
18
19 # If BTN_B pressed go faster
20 # TODO: Add a second if for BTN_B

21 # TODO: Reduce the delay time

Goals:

Add a second if statement to check if BTN_B was pressed.

Use this code delay = delay - 0.2 if BTN_B was pressed.

Press BTN_B enough to bring your delay less than 0.0.

Your program should throw an error.

Use an if statement here to check if BTN_B was pressed.

Make the heart beat faster with BTN_B:

delay = delay - 0.2

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 49 of 295

Tools Found: Exception

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Variable to control beat speed
 5 delay = 1.0
 6
 7 # Keep displaying beats forever
 8 while True:
 9 display.show(pics.HEART)
10 sleep(delay)
11
12 display.show(pics.HEART_SMALL)
13 sleep(delay)
14
15 # If BTN_A pressed go slower
16 if buttons.was_pressed(BTN_A):
17 delay = delay + 0.2
18
19 # If BTN_B pressed go faster
20 if buttons.was_pressed(BTN_B):
21 delay = delay - 0.2

Quiz 2 - Heartfelt Recap

Question 1: Why does the heartbeat blink faster when you subtract time?

 A smaller delay in each loop cycle makes a faster blink rate.

 Negative numbers are always faster than positive ones.

 Smaller hearts beat faster than larger ones.

Question 2: Why does your program create an error message when you keep pressing B?

 The delay variable goes below zero, and sleep() can't handle negative numbers.

 Too small a delay creates a time vortex.

 There is a "divide by zero" error in the sleep() function.

 The display can't run that fast.

Mission 6 Complete

Clicking buttons to make the speed faster and slower?
That code's EVERYWHERE!

Lighting Dimmers
Game Controllers
Microwave Ovens
Vehicle Cruise Controls

Your code could become an excellent Visual Metronome that could be used to set the tempo for a band!

...Imagine what else you might create!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 50 of 295

Mission 7 - Personal Billboard
In this project you'll use the CodeX display and buttons to make a billboard that shows others
how you're feeling, a fun picture, or a short message.

You code will be able to:

Show images that match your current mood.
Display text messages.
Select between different images and messages while the
code is running.

On battery power, you could make the CodeX into a wearable
electronic badge or a portable sign for a wall or desk!

Project Goals:

Program the CodeX Buttons to select from a series of
images to show.
Make it easy to add lots more images.
Add the ability to mix Text messages with image selection.

Ready to get started?

Objective 1 - Image Selector

As you've seen already, the CodeX has lots of built-in pics like pics.HAPPY and pics.HEART.

Your first task is to make an image display that lets users select an emotion to match their mood by pressing BTN_L and BTN_R to cycle
through their choices.

Can you use the coding ingredients from the last project to do this?

Go ahead an type in the code from the CodeTrek.

... remember, typing the # comments is optional!

Run your code!

You'll need to press button L or R to see the first image!

Make sure your display shows both HAPPY and SAD images.

CodeTrek:

 1 from codex import *
 2
 3 # Loop forever - keep reading buttons and showing images!
 4 while True:
 5 if buttons.was_pressed(BTN_L):
 6 display.show(pics.HAPPY)
 7
 8 # TODO: Show pics.SAD if BTN_R pressed

Goals:

Create a new file named Billboard.

Use the buttons.was_pressed() function.

Use the example for BTN_L above.

Use an if statement.
Make sure you indent properly.
display.show(pics.SAD)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 51 of 295

Add the code to check if BTN_R was pressed.

Solution:

 1 from codex import *
 2
 3 # Loop forever - keep reading buttons and showing images!
 4 while True:
 5 if buttons.was_pressed(BTN_L):
 6 display.show(pics.HAPPY)
 7
 8 if buttons.was_pressed(BTN_R):
 9 display.show(pics.SAD)

Objective 2 - Select More Images

Give me more pics!

To make the buttons scroll through more than two choices, you must keep track of the choice in your code.

You could use a number to track which choice should be displayed, like this:

A number like this is called an index. Imagine using your "index finger" to point to each choice.

How to display an image based on a number choice?

Try using an if statement for each image!

choice = 0

while True:
 if choice == 0:
 display.show(pics.HAPPY)
 if choice == 1:
 display.show(pics.SAD)

Follow this pattern to add TWO more Images so you have FOUR choices in all!

CONCEPT: double equals sign

Why is there a "double equal" sign in the code?

A "single equal" would mean assignment.
Like assigning choice = 0 at the top of the program.

A "double equal" is a comparison operator, just like > and friends.

Your first step is to make BTN_R go to the next pic choice + 1.

See the CodeTrek for details. Update your while loop!

CodeTrek:

 1 from codex import *
 2
 3 choice = 0

 4
 5 while True:
 6 if choice == 0:
 7 display.show(pics.HAPPY)

Create a variable named choice and start it at 0.

pics.HAPPY will show automatically because choice starts at 0.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 52 of 295

 8 if choice == 1:
 9 display.show(pics.SAD)
10 # TODO: Add choice == 2 for HEART

11 # TODO: Add choice == 3 for ASLEEP

12
13 if buttons.was_pressed(BTN_R):
14 choice = choice + 1

Goals:

Create a variable named choice that is set to 0 initially.

Use if choice == 2: in your code

Use if choice == 3: in your code

Tools Found: Assignment, Comparison Operators, undefined

Solution:

 1 from codex import *
 2
 3 choice = 0
 4
 5 while True:
 6 if choice == 0:
 7 display.show(pics.HAPPY)
 8 if choice == 1:
 9 display.show(pics.SAD)
10 if choice == 2:
11 display.show(pics.HEART)
12 if choice == 3:
13 display.show(pics.ASLEEP)
14
15 if buttons.was_pressed(BTN_R):
16 choice = choice + 1

Objective 3 - Scroll Both Directions

Can you add code to scroll back when BTN_L was pressed?

Using what you've already learned, use if buttons.was_pressed(BTN_L) to subtract 1 from choice.

if buttons.was_pressed(BTN_L):
 choice = choice - 1

Let me show you another awesome capability of the CodeSpace debugger: Viewing your variables.

Watch your variables

Be sure to use == double equal sign for comparison

Show pics.HEART if choice is 2.

Show pics.ASLEEP if choice is 3.

Add 1 to choice every time BTN_R was pressed.

What will happen when you press it the fourth time?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 53 of 295

Try stepping through the code. Press button L or R while the code is waiting somewhere in the while loop, and watch the value of
choice change as you step through the next pass of the loop.

CodeTrek:

 1 from codex import *
 2
 3 choice = 0
 4
 5 while True:
 6 if choice == 0:
 7 display.show(pics.HAPPY)
 8 if choice == 1:
 9 display.show(pics.SAD)
10 if choice == 2:
11 display.show(pics.HEART)
12 if choice == 3:
13 display.show(pics.ASLEEP)
14
15 if buttons.was_pressed(BTN_R):
16 choice = choice + 1
17 # TODO: if BTN_L subtract -1 from choice

Goals:

Add code to scroll back when BTN_L is pressed

You will need choice = choice - 1

Use the debugger Step In button to show the different moods.

You will need to hit the debug button again first.

You must step at least 5 times!

Open the Console and watch the debug variables panel.

Hint: Use the button.

Tools Found: Indentation

Solution:

 1 from codex import *
 2
 3 choice = 0
 4
 5 while True:
 6 if choice == 0:
 7 display.show(pics.HAPPY)
 8 if choice == 1:
 9 display.show(pics.SAD)
10 if choice == 2:
11 display.show(pics.HEART)
12 if choice == 3:
13 display.show(pics.ASLEEP)
14
15 if buttons.was_pressed(BTN_R):
16 choice = choice + 1

You can add a check for if BTN_L was pressed here.

If button L was pressed:

choice = choice - 1

Watch your indentation!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 54 of 295

17 if buttons.was_pressed(BTN_L):
18 choice = choice - 1

Quiz 1 - Billboard Checkpoint

Question 1: What happens when you press BTN_L on the CodeX while paused on a line of code in the debugger?

 The buttons.was_pressed(BTN_L) is True on the next step.

 The button press is lost.

 The program advances to the next line of code.

Question 2: What does your "scroll both directions" program do when you keep pressing button 'R' after pics.ASLEEP is shown?

 The choice variable goes to 4 and keeps counting up.

 The choice variable stops at 3 which is the number of the last image.

 The choice variable starts over at zero.

Question 3: What does the double-equals sign mean in if choice == 0 ?

 Compares choice to zero, branching when choice is zero.

 Assigns the variable choice a value of zero.

 Selects a choice of either the symbol == or 0.

Objective 4 - Wrap Around

As you've probably noticed, if you keep pressing buttons, choice can go past the ends of your image list.

That might confuse users!

Can you improve the program, and avoid this problem?

Make the choice variable wrap back around to the first image (choice = 0) and keep advancing from there.

Write the code to prevent choice going above 3.
...also add code to keep it from going below 0!

To keep choice from going above 3 you can use the greater than > comparison operator. This operator checks if one number is
greater than another!

Here is some wrap around code when adding +1.

choice = choice + 1
if choice > 3:
 choice = 0

How would you check for choice less than 0?

CodeTrek:

 1 from codex import *
 2
 3 choice = 0
 4
 5 while True:
 6 if choice == 0:
 7 display.show(pics.HAPPY)
 8 if choice == 1:
 9 display.show(pics.SAD)
10 if choice == 2:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 55 of 295

11 display.show(pics.HEART)
12 if choice == 3:
13 display.show(pics.ASLEEP)
14
15 if buttons.was_pressed(BTN_R):
16 choice = choice + 1
17 if choice > 3:
18 choice = 0

19
20 if buttons.was_pressed(BTN_L):
21 choice = choice - 1
22 # TODO: Check if less than 0

23 # TODO: Wrap around to 3

Goals:

Use if choice > 3 when wrapping around on the + 1.

Use if choice < 0 when wrapping around on the - 1.

Tools Found: Comparison Operators

Solution:

 1 from codex import *
 2
 3 choice = 0
 4
 5 while True:
 6 if choice == 0:
 7 display.show(pics.HAPPY)
 8 if choice == 1:
 9 display.show(pics.SAD)
10 if choice == 2:
11 display.show(pics.HEART)
12 if choice == 3:
13 display.show(pics.ASLEEP)
14
15 if buttons.was_pressed(BTN_R):
16 choice = choice + 1
17 if choice > 3:
18 choice = 0
19
20 if buttons.was_pressed(BTN_L):
21 choice = choice - 1
22 if choice < 0:
23 choice = 3

Objective 5 - Image List

So many Images to display
...but it takes so much code to add more!

Start by wrapping around from 3 to 0 if BTN_R is pressed again.

Check if the variable choice is < less than 0.

Wrapping around means going from 0 to 3 when subtracting:

choice = 3

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 56 of 295

It takes two lines of code for each image you add, so your program is long and your fingers grow tired...

Wouldn't it be great if you could just make a list of Images like this for your code?

my_list = [pics.HAPPY, pics.SAD, pics.HEART]

Well, in fact Python has a feature just for this purpose!

It's called... wait for it... a list.

CONCEPT: Lists

In Python you create a list just as shown above, using square brackets.

example_list = [item_0, item_1, item_2]

The order of each item in the list is important!

Items are counted starting with zero.
An item's order in the list is called its index.
You can get any item from a list using its index!

first = example_list[0] # Get item_0

To access one of the items in a list, use brackets like:

Assign the first item in the list to my_image
my_image = my_list[0]

Lists have other cool features, including the ability to get the number of items:

Get the length of the list
num_choices = len(my_list)

Can you think how you might improve your code using a list?

CodeTrek:

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [pics.HAPPY, pics.SAD, pics.HEART, pics.ASLEEP]

 6
 7 while True:
 8 my_image = my_list[choice]

 9 display.show(my_image)

10
11 if buttons.was_pressed(BTN_R):
12 choice = choice + 1

This is your new list!

Make sure the list has exactly 4 items in it!

You can choose the image from your list by its index.

choice is the same as index here!

You got rid of all those if choice == X: statements!

That is much simpler!

Now all that's left is showing the image.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 57 of 295

13 if choice > 3:
14 choice = 0
15
16 if buttons.was_pressed(BTN_L):
17 choice = choice - 1
18 if choice < 0:
19 choice = 3

Goals:

Create a list variable named my_list and initialize it with 4 items.

Access an index in my_list using the variable choice.

Tools Found: list

Solution:

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [pics.HAPPY, pics.SAD, pics.HEART, pics.ASLEEP]
 6
 7 while True:
 8 my_image = my_list[choice]
 9 display.show(my_image)
10
11 if buttons.was_pressed(BTN_R):
12 choice = choice + 1
13 if choice > 3:
14 choice = 0
15
16 if buttons.was_pressed(BTN_L):
17 choice = choice - 1
18 if choice < 0:
19 choice = 3

Objective 6 - No Magic Numbers!

Use built-in list features to enhance your code!
Notice how the length of your list is baked into your code?

The "magic number" of 3 for the length of your list is making your code harder to read and maintain.

If you add Images to the list, you have to modify the rest of the code.
People reading your code might not know why the numbers 3 and 0 are being used to compare and assign choice.

Make your code more readable and maintainable:

Define a variable for LAST_INDEX to replace 3. (Why is this variable upper case?)
Use the built-in len(my_list) to automatically get the length of the list

Take a look at this code:

LAST_INDEX = len(my_list) - 1

Why do you need to subtract 1?

Because the indexes start at 0 so the index of the last item is 1 less than the length!

Now you can add some more Images to your list.

Lists make it so easy!
Check the pic gallery for more Images!

CodeTrek:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 58 of 295

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [
 6 pics.HAPPY,
 7 pics.SAD,
 8 pics.HEART,
 9 pics.ASLEEP,
10 pics.SURPRISED
11]

12
13 # Define the last index
14 LAST_INDEX = len(my_list) - 1

15
16 while True:
17 my_image = my_list[choice]
18 display.show(my_image)
19
20 if buttons.was_pressed(BTN_R):
21 choice = choice + 1
22 if choice > LAST_INDEX:

23 choice = 0
24
25 if buttons.was_pressed(BTN_L):
26 choice = choice - 1
27 if choice < 0:
28 choice = LAST_INDEX

Goals:

Add a fifth image to my_list!

Create a LAST_INDEX variable and default it to len(my_list) - 1.

Tools Found: Constants, CodeX Image Pics, list

Solution:

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [
 6 pics.HAPPY,
 7 pics.SAD,
 8 pics.HEART,
 9 pics.ASLEEP,
10 pics.SURPRISED

When the list gets long you can define it on multiple lines!

Add another image to your list.

Add the LAST_INDEX variable!

Remember to subtract 1!!!

Instead of the magic 3 you can use LAST_INDEX!

Don't forget to use LAST_INDEX here too!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 59 of 295

11]
12
13 # Define the last index
14 LAST_INDEX = len(my_list) - 1
15
16 while True:
17 my_image = my_list[choice]
18 display.show(my_image)
19
20 if buttons.was_pressed(BTN_R):
21 choice = choice + 1
22 if choice > LAST_INDEX:
23 choice = 0
24
25 if buttons.was_pressed(BTN_L):
26 choice = choice - 1
27 if choice < 0:
28 choice = LAST_INDEX

Quiz 2 - List Len

Question 1: Why do you have to subtract 1 from len(my_list) to get LAST_INDEX?

 List indexes start at 0 so the index of the last item is len(my_list) - 1.

 Because the program needs to count up as well as down in the list.

 List indexes are negative numbers so len(my_list) - 1 is required.

Objective 7 - Text Time!

Images are expressive
...but TEXT can say much more!

You can define any message you want by putting it in quotes:

my_message = "Hi there!"

The computer doesn't care what's between the quotation marks - it's just a string of characters.

Changing your program to display text messages is very simple:

display.show() doesn't just accept Images - it can also handle string types.

Modify your program to add a personalized message string to the list.

Example:

my_list = [
 "Ahoy",
 pics.HAPPY,
 pics.SAD,
 pics.HEART,
 pics.ASLEEP,
 pics.SURPRISED
]

Test your program and make sure it shows Images and text!!

CodeTrek:

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [
 6 # TODO: Add a personalized message here

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 60 of 295

 7 pics.HAPPY,
 8 pics.SAD,
 9 pics.HEART,
10 pics.ASLEEP,
11 pics.SURPRISED
12]
13
14 # Define the last index
15 LAST_INDEX = len(my_list) - 1
16
17 while True:
18 my_image = my_list[choice]
19 display.show(my_image)
20
21 if buttons.was_pressed(BTN_R):
22 choice = choice + 1
23 if choice > LAST_INDEX:
24 choice = 0
25
26 if buttons.was_pressed(BTN_L):
27 choice = choice - 1
28 if choice < 0:
29 choice = LAST_INDEX

Goal:

Add a string message to my_list.

Tools Found: str, Data Types

Solution:

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [
 6 "Smile!",
 7 pics.HAPPY,
 8 pics.SAD,
 9 pics.HEART,
10 pics.ASLEEP,
11 pics.SURPRISED
12]
13
14 # Define the last index
15 LAST_INDEX = len(my_list) - 1
16
17 while True:
18 my_image = my_list[choice]
19 display.show(my_image)
20
21 if buttons.was_pressed(BTN_R):
22 choice = choice + 1
23 if choice > LAST_INDEX:
24 choice = 0
25
26 if buttons.was_pressed(BTN_L):
27 choice = choice - 1
28 if choice < 0:
29 choice = LAST_INDEX

Objective 8 - Green With Envy

Color My World

Add a personalized string inside your list like "Smile!".

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 61 of 295

What if you're neither HAPPY nor SAD?

...and text just isn't describing you?

Sometimes you just need a color.

Maybe you are GREEN with envy!

Wouldn't it be cool to fill the display with a color?

Add the color GREEN to my_list and try to show it!

🚨 🚨 Warning!! 🚨 🚨
GREEN may not work properly in display.show()!!

display.show() only works with Bitmap and str types.

CodeTrek:

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [
 6 # TODO: Add the color GREEN

 7 "Smile!",
 8 pics.HAPPY,
 9 pics.SAD,
10 pics.HEART,
11 pics.ASLEEP,
12 pics.SURPRISED
13]
14
15 # Define the last index
16 LAST_INDEX = len(my_list) - 1
17
18 while True:
19 my_image = my_list[choice]
20 display.show(my_image)
21
22 if buttons.was_pressed(BTN_R):
23 choice = choice + 1
24 if choice > LAST_INDEX:
25 choice = 0
26
27 if buttons.was_pressed(BTN_L):
28 choice = choice - 1
29 if choice < 0:
30 choice = LAST_INDEX

Goal:

Try to display.show() the color GREEN.

Beware... you may get an error!

Tools Found: Data Types, Exception

Solution:

 1 from codex import *
 2

Add the color GREEN to my_list.

You want it to show up on the pixels!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 62 of 295

 3 choice = 0
 4
 5 my_list = [
 6 GREEN,
 7 "Smile!",
 8 pics.HAPPY,
 9 pics.SAD,
10 pics.HEART,
11 pics.ASLEEP,
12 pics.SURPRISED
13]
14
15 # Define the last index
16 LAST_INDEX = len(my_list) - 1
17
18 while True:
19 my_image = my_list[choice]
20 display.show(my_image)
21
22 if buttons.was_pressed(BTN_R):
23 choice = choice + 1
24 if choice > LAST_INDEX:
25 choice = 0
26
27 if buttons.was_pressed(BTN_L):
28 choice = choice - 1
29 if choice < 0:
30 choice = LAST_INDEX

Objective 9 - Fill 'er Up

What's in a Color?
Colors in the codex library are actually tuples!

A tuple is like a list that can't be changed.
CodeX color tuples have three integer values: (red, green, blue)

GREEN is defined as (0, 255, 0)

You can fill the whole screen with a color using this new display function:

Fill the display with given color
display.fill(COLOR)

Fixing Your BUG!
You've already seen a similar error using display.show()

Remember, to show an int number you had to convert it to a string with
str().

But for your Billboard you need to detect a tuple and treat it as a
color.
So, what can you do?

You need to check the type of the item before showing it!

CONCEPT: type checking

The built-in function type() is used to read the type of object a variable refers to.

Each data type has a name such as:
str for strings
int for integers
tuple for tuples

The type(object) function returns the the object's type.

Finally, you will need an if and else statement.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 63 of 295

else is a branching statement that comes after an if.

It means if the if condition was False then run this block!

CodeTrek:

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [
 6 GREEN,
 7 "Ahoy",
 8 pics.HAPPY,
 9 pics.SAD,
10 pics.HEART,
11 pics.ASLEEP,
12 pics.SURPRISED
13]
14
15 # Define the last index
16 LAST_INDEX = len(my_list) - 1
17
18 while True:
19 my_image = my_list[choice]
20
21 # If the type is a color
22 if type(my_image) == tuple:

23 display.fill(my_image)

24 else:

25 # TODO: Use display.show()

26
27 if buttons.was_pressed(BTN_R):
28 choice = choice + 1
29 if choice > LAST_INDEX:
30 choice = 0
31
32 if buttons.was_pressed(BTN_L):
33 choice = choice - 1
34 if choice < 0:
35 choice = LAST_INDEX

Goals:

Use the type() function to check for a color (tuple).

Use the display.fill() function if the item is a color!

Check whether the list item is a color.

Colors in codex are just tuples!

display.fill() will fill the display with a color!

Fill the screen blue
display.fill(BLUE)

An else: statement must follow an if condition:.

It also needs to be indented at the same level!

Show Images or strings with display.show()

Use TAB to move the code you already have beneath this else!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 64 of 295

Tools Found: tuple, list, int, Display, str, Data Types, Branching

Solution:

 1 from codex import *
 2
 3 choice = 0
 4
 5 my_list = [
 6 "Ahoy",
 7 pics.HAPPY,
 8 GREEN,
 9 pics.SAD,
10 pics.HEART,
11 pics.ASLEEP,
12 pics.SURPRISED
13]
14
15 # Define the last index
16 LAST_INDEX = len(my_list) - 1
17
18 while True:
19 my_image = my_list[choice]
20
21 # If the type is a color
22 if type(my_image) == tuple:
23 display.fill(my_image)
24 else:
25 display.show(my_image)
26
27 if buttons.was_pressed(BTN_R):
28 choice = choice + 1
29 if choice > LAST_INDEX:
30 choice = 0
31
32 if buttons.was_pressed(BTN_L):
33 choice = choice - 1
34 if choice < 0:
35 choice = LAST_INDEX

Mission 7 Complete

Congratulations! There was a LOT to learn in this project!
Just a few of the new Tools you used:

Managing lists of information.
Handling the "list index overflow/wrap" case.
Inspecting different data types.
Viewing variables in the Debug Panel.

And you have built real-world code!

A scrolling menu system like the one you built is found in a lot of devices and applications, from medical
equipment to toys.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 65 of 295

Mission 8 - Answer Bot
In this project you will create a random answer generator.

Instead of selecting messages yourself, like in the previous project, this time you'll have the
computer decide for you!

You'll never have to waste your time on all those unimportant, random decisions of life again.

→ Just press the button and let your Answer Bot decide :-)

Project Goals:

Program the CodeX to choose and display a random number when a button is
pressed.
Change the program to display a random text message from a list of possible answers.

Ready to get started?

Objective 1 - Display a Number

To begin, you will pick a fixed number and show it on the display.

 Heads up!
The code in the CodeTrek has an error which you will correct later.

Can you spot the error before you run it?

You may remember seeing this in a previous project!

Go ahead and run your code!

CodeTrek:

1 from codex import *
2
3 number = 1
4 display.show(number)

Goals:

Create a new file named Answer_Bot.

Run the code from the CodeTrek to cause an error.

Tools Found: Exception

Solution:

1 from codex import *
2
3 number = 1
4 display.show(number)

Objective 2 - Fix it Up

It's time to fix the code and make the number show up on the display!

When you encountered this error before, the fix was to convert the integer type into a string type.

The built-in str function is made for that!
You could certainly fix the error with str(number)...

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 66 of 295

But you also now know a different text-message function: display.print()

I heard a rumor that it does the str() conversion automatically!

Give it a try with display.print(number) instead

Try some different numbers just for fun!

CodeTrek:

1 from codex import *
2
3 number = 1
4 # TODO: Show number on the display

Goal:

Change your code to use display.print(number)

Tools Found: int, str

Solution:

1 from codex import *
2
3 number = 1
4 display.print(number)

Objective 3 - Randomize!

It's time to get RANDOM in here!

You'll be using the random Python module, so look for a new import statement.

CONCEPT: random

Python's random module makes it easy to work with random numbers.

import random
Get random number from 0 to 9
x = random.randrange(10)

Notice: Just like lists count from 0, so does randrange(N)
So a range of 10 numbers gives values 0 through 9.

Modify your code to display a random number rather than your fixed number from the previous step.

You should see a random number when you run the program.

Run the program a few times to make sure you see different numbers.

Sometimes you may see the same number repeat, but that's all part of the randomness!

CodeTrek:

Use the display.print() function.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 67 of 295

1 from codex import *
2 import random
3
4 number = # TODO: Random number 0 to 9

5 display.print(number, scale=3)

Goals:

Use the randrange() function with 10 as the argument.

This will give you an int from 0 to 9!

Embiggen It!

The display.print() function has another awesome feature.

You can scale up the size of the text like so:
display.print(number, scale=3)

Go ahead and try bigger text!

Tools Found: import, Random Numbers, list, Ranges, int, Keyword and Positional Arguments

Solution:

1 from codex import *
2 import random
3
4 number = random.randrange(10)
5 display.print(number, scale=3)

Objective 4 - Mix Things Up

Random Quick Mix!
Re-starting the program every time you want a new random number is too slow!

You can fix that!

Modify your code to randomly select a number from 0 to 9 each time Button A is pressed.

Make sure to indent your code inside a loop, checking for button presses.

Refresh your memory on CodeX Buttons and loops if needed!

Run your code and...

Press Button A a few times.

A random number should show up each time.

CodeTrek:

1 from codex import *
2 import random

To get a random number from 0 to 9 use:

random.randrange(10)

Try a different scale if you like!

The display.print() function has a keyword argument that lets you change the size of your text.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 68 of 295

3
4 # TODO: Add a while True loop

5 # TODO: If BTN_A was pressed

6 number = random.randrange(10)
7 display.print(number, scale=3)

Goals:

Use a while True loop in your code.

Check if button A was pressed.

Tools Found: Indentation, CodeX Buttons, Loops

Solution:

 1 from codex import *
 2 import random
 3
 4 while True:
 5 if buttons.was_pressed(BTN_A):
 6 number = random.randrange(10)
 7 display.print(number, scale=3)
 8

Objective 5 - Robot Opinion

Time to give the Robot an opinion!
Now that you have made an amazing random number display, it's time to make the CodeX answer a question like: "What is your
favorite food?" ...and display a random answer.

This is a perfect place for a list!

Use a random number as an index into a list of Answers.

Personalize Me!
This is your Answer Bot, so you can make it answer a different question:

Favorite sports team
Best dance moves
Magic 8 ball answers...
You decide!

Now, get your list of Answers ready and code this thing!

Here is an example:

What's for lunch?
answers = [
 "Pizza",
 "Burger",
 "Salad"
]

Add a while True: loop here to make the program keep requesting random numbers.

Check if BTN_A was pressed.

if buttons.was_pressed(BTN_A):

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 69 of 295

Run your code and press Button A a few times to get some answers.

CodeTrek:

 1 from codex import *
 2 import random
 3
 4 answers = [
 5 # TODO: Fill in with your own answers

 6]
 7
 8 while True:
 9 if buttons.was_pressed(BTN_A):
10 count = # TODO: count is the number of answers

11 index = random.randrange(count)

12 display.print(answers[index])

Goals:

Create a variable named answers that is defined as a list.

Use the len() function to get the length of the answers list.

Tools Found: list, str

Solution:

 1 from codex import *
 2 import random
 3
 4 answers = [
 5 "Pizza ",
 6 "Burger",
 7 "Salad "
 8]
 9
10 while True:
11 if buttons.was_pressed(BTN_A):
12 count = len(answers)

Add your own answers here.

Each string must be separated by a comma ,

Here is an example:

answers = [
 "Pizza",
 "Burger",
 "Salad"
]

The count is the len() of the answers list.

len(answers)

You need a random number from 0 to the number of answers minus 1.

Print the random answer from the answers list.

Your index is the random number!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 70 of 295

13 index = random.randrange(count)
14 display.print(answers[index])

Quiz 1 - Get Some Answers

Question 1: Why does range(10) only go up to 9??

 Ranges start at 0 (zero), and there are 10 values from 0-9.

 The range(10) also includes -1 so the max is 9.

 The variable itself consumes one integer so there are only 9 values in range(10).

Question 2: What is the count variable doing for you in this program?

answers = ["0", "1", "2"]

while True:
 if buttons.was_pressed(BTN_A):
 count = len(answers)
 index = random.randrange(count)

 The count variable stores len(answers) to give to the 'randrange' function.

 The count variable automatically scans the list and counts the number of items.

 The count is a beloved character in educational television.

Objective 6 - Wait for Answer

Let's fancy up the Answer Bot
Flashy colors while you wait!

Make the pixels constantly cycle through random colors.

But now you need a list of colors.

Good news - you already have that list!*

Importing from codex import * gives you access to a lot of cool CodeX features, including the colors module.

That's where RED, GREEN, BLUE, and all the other predefined color constants come from.
But also it gives you: COLORS_BY_NAME and COLOR_LIST.

Built into the 'colors' module
COLOR_LIST = [
 BLACK, BROWN, RED, ORANGE, YELLOW,
 GREEN, BLUE, PURPLE, GRAY, WHITE,
 CYAN, MAGENTA, PINK, LIGHT_GRAY, DARK_GREEN,
 DARK_BLUE,
]

You already know how to pick a random item from a list, right?

If you're unsure, let the CodeTrek be your guide!

CodeTrek:

 1 from codex import *
 2 import random
 3 from time import sleep

Import sleep so that you can add some delays.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 71 of 295

 4
 5 answers = [
 6 "Pizza ",
 7 "Burger",
 8 "Salad "
 9]
10
11 while True:
12 # Pick a random color from COLOR_LIST
13 index = random.randrange(len(COLOR_LIST))
14 color = COLOR_LIST[index]

15
16 pixels.set(0, color)
17 # TODO: Set pixel 1 to color
18 # TODO: Set pixel 2 to color
19 # TODO: Set pixel 3 to color

20
21 if buttons.was_pressed(BTN_A):
22 count = len(answers)
23 index = random.randrange(count)
24 display.print(answers[index])
25
26 sleep(0.1)

Goals:

Create a variable named color and assign to it a random color from COLOR_LIST

Add a delay so your pixels can display each color long enough for your eyes to see it.

Tools Found: Random Numbers, list, Constants, Timing

Solution:

 1 from codex import *
 2 import random
 3 from time import sleep
 4
 5 answers = [
 6 "Pizza",
 7 "Burger",
 8 "Salad"
 9]
10
11 while True:
12 # Pick a random color from COLOR_LIST
13 index = random.randrange(len(COLOR_LIST))
14 color = COLOR_LIST[index]
15
16 pixels.set(0, color)
17 pixels.set(1, color)
18 pixels.set(2, color)
19 pixels.set(3, color)

The len() function tells you how many colors are in COLOR_LIST.

So that's the range of random numbers you need!

Set all 4 pixels to the randomly chosen color.

This delay is important because it prevents the pixels color's from blending together.

This pause allows your eyes to see the color.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 72 of 295

20
21 if buttons.was_pressed(BTN_A):
22 count = len(answers)
23 index = random.randrange(count)
24 display.print(answers[index])
25
26 sleep(0.1)

Objective 7 - Choices, Choices

Choices, Choices...
There are often many ways to achieve your goals when coding!

Your "Answer Bot" is working great, but you can improve it.
And make your code simpler and more readable at the same time!

Improvement: Individual Random Pixels

Make each pixel flash a different random color.

You already know a way to do this... just repeat the code you already have, and choose 4 different colors each time.
But a new Python random feature will make it even easier!

The random.choice() function simplifies what your code is already doing

Behind the scenes it does exactly what your code was doing to pick an item from a list.

Choose a random color from the list
color = random.choice(COLOR_LIST)

CodeTrek:

 1 from codex import *
 2 import random
 3 from time import sleep
 4
 5 answers = [
 6 "Pizza",
 7 "Burger",
 8 "Salad"
 9]
10
11 while True:
12 pixels.set(0, random.choice(COLOR_LIST))
13 pixels.set(1, random.choice(COLOR_LIST))
14 pixels.set(2, random.choice(COLOR_LIST))
15 pixels.set(3, random.choice(COLOR_LIST))

16
17 if buttons.was_pressed(BTN_A):
18 display.print(random.choice(answers))

19
20 sleep(0.1)

Goals:

Use random.choice() to set each pixel to its own random item from COLOR_LIST

Simplify your code that chooses from the answers list.

Using random.choice(...) would be a good choice!

Use random.choice() to choose a random color for each pixel.

Simplify choosing from your answers list too!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 73 of 295

Tools Found: Readability, Random Numbers

Solution:

 1 from codex import *
 2 import random
 3 from time import sleep
 4
 5 answers = [
 6 "Pizza",
 7 "Burger",
 8 "Salad"
 9]
10
11 while True:
12 pixels.set(0, random.choice(COLOR_LIST))
13 pixels.set(1, random.choice(COLOR_LIST))
14 pixels.set(2, random.choice(COLOR_LIST))
15 pixels.set(3, random.choice(COLOR_LIST))
16
17 if buttons.was_pressed(BTN_A):
18 display.print(random.choice(answers))
19
20 sleep(0.1)

Mission 8 Complete

But seriously, the fundamentals of this code are really important to a lot of applications!

Random number code is crucial for:

Secure password encryption
Real-world simulator trainers
Scientific statistical sampling
Artifical Intelligence (AI) tools

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 74 of 295

Mission 9 - Game Spinner
In this project, you'll make a Game Spinner that can:

Choose the next person to tell a story in a group of friends
Navigate every turn in a Crazy Compass Game
Decide which pizza slice to eat next
Provide an element for a game you create!

Your game spinner will show a spinning arrow on the CodeX display when
you press Button A or B, and then slow down and stop in one of 8 random
directions.

Project Goals:

Display an Arrow in a random direction
Detect button A or B to trigger the Arrow spin
Animate an Arrow spinning around
Make the Arrow gradually slow rather than stopping abruptly

Ready to get started?

Objective 1 - Random Arrow

The CodeX has a set of "Compass Arrow" pics that are perfect for your spinner.

There's even a built-in list with ALL the ARROWS

This list is ALREADY provided!
(DO NOT TYPE THIS IN!)
pics.ALL_ARROWS = [
 pics.ARROW_N,
 pics.ARROW_NE,
 pics.ARROW_E,
 pics.ARROW_SE,
 pics.ARROW_S,
 pics.ARROW_SW,
 pics.ARROW_W,
 pics.ARROW_NW,
]

Displaying an ARROW from the list is simple.

There are 8 arrows, so the list index goes from 0 to 7:

display.show(pics.ALL_ARROWS[num])

Your Game Spinner needs to land on a random direction

Use the random module to choose which ARROW to display. The following sets num to a random number:

num = random.randrange(8)

You could also use random.choice() ...it's your choice!

CodeTrek:

1 from codex import *
2 import random
3
4 num = random.randrange(8)

Instead of using the magic number 8 here you could create a variable!

ARROWS_LEN = len(pics.ALL_ARROWS)
num = random.randrange(ARROWS_LEN)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 75 of 295

5 display.show(pics.ALL_ARROWS[num])

Goals:

Create a new file named Game_Spinner.

Show a random arrow from the pics.ALL_ARROWS list.

Tools Found: CodeX Image Pics, list, Random Numbers

Solution:

1 from codex import *
2 import random
3
4 num = random.randrange(8)
5 display.show(pics. ALL_ARROWS[num])

Quiz 1 - Which Arrows

Question 1: What are the possible values of num?

import random
num = random.randrange(8)

 0,1,2,3,4,5,6,7

 1,2,3,4,5,6,7,8

 -3,-2,-1,0,1,2,3,4

Question 2: Which image is displayed by display.show() below?

pics.ALL_ARROWS = [
 pics.ARROW_N,
 pics.ARROW_NE,
 pics.ARROW_E,
 pics.ARROW_SE,
 pics.ARROW_S,
 pics.ARROW_SW,
 pics.ARROW_W,
 pics.ARROW_NW
]

display.show(pics.ALL_ARROWS[3])

 pics.ARROW_SE

 pics.ARROW_SW

 pics.ARROW_S

 pics.ARROW_E

Objective 2 - Click to Flick

Flick!

The classic Game Spinner has a metal arrow that you finger-flick to spin.

Show the random arrow from the pics.ALL_ARROWS list.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 76 of 295

Make your CodeX spin whenever Button A or B is pressed.

The program should run forever, so wrap your code in an infinite loop, checking both BTN_A and BTN_B.

There are two new concepts that will help with this task!

CONCEPT: Instantaneous Button Polling

The function buttons.is_pressed(BTN_A) returns True if button A is currently held down.

Your code can quickly check the state of the CodeX Buttons with this function.

CONCEPT: Logical Operators

You've seen how branching and loops control the flow of your program with True / False decisions:

Functions like buttons.is_pressed(BTN_A) that return True or False.
Comparison operations like x > 51 (which are also True or False)

But what if you have multiple items to compare - like two buttons, testing if either one or the other is True?

That's where logical operators: and, or, and not come into play.
Be sure to check out the Toolbox help for this topic!

It's time to apply these new concepts to make your spinner respond to either button!

CodeTrek:

1 from codex import *
2 import random
3
4 while True:

5 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):

6 num = random.randrange(8)
7 display.show(pics.ALL_ARROWS[num])

Goals:

Keep running forever!

Add an infinite while True loop.

Check for A or B to "spin"

Use an or operator inside an if statement.

On button press, CHOOSE!

Tools Found: CodeX Buttons, Branching, Loops, Comparison Operators, Logical Operators

Add in an infinite loop!

Check if either button IS currently pressed.

or lets you do either:

if X or Y:

Double check your indentation!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 77 of 295

Solution:

1 from codex import *
2 import random
3
4 while True:
5 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
6 num = random.randrange(8)
7 display.show(pics.ALL_ARROWS[num])

Objective 3 - Fun Functions

Your program does the job, but you can improve it with...

Realism!
Realistic spinning action would be awesome!

Next step will be to add animation - to make the arrow spin around before it lands on the
random choice!

The shape of your program will be: (example - don't type this in)

while True:
 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
 # animate arrow spinning around
 # ...

 # show random arrow
 # ...

Yikes! It may take a few lines of code to do the animation, so the above code could get messy. Too bad there aren't built-in functions
like spin_animation() and show_random_arrow().

Alas, those functions are not built-in!

But you can make your own functions!

Making new functions is like creating your own language!

CONCEPT: Functions

Here is an example function.

def show_random_arrow():
 num = random.randrange(8)
 display.show(pics.ALL_ARROWS[num])

The keyword def means "define function". After the def statement runs, the named function can be called just like a built-in
function!

Dividing code into logical functions can make it much more readable.

 Note: Functions must be defined before they are used, so make sure to put the def above your while loop!

CodeTrek:

 1 from codex import *
 2 import random
 3
 4 def show_random_arrow():

Define your new function here.

Remember def is used to create a new function.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 78 of 295

 5 num = random.randrange(8)
 6 display.show(pics.ALL_ARROWS[num])

 7
 8 while True:
 9 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
10 show_random_arrow()

Goals:

Define a function named show_random_arrow().

Call your show_random_arrow() function!

Tools Found: Functions, Readability, Divide and Conquer

Solution:

 1 from codex import *
 2 import random
 3
 4 def show_random_arrow():
 5 num = random.randrange(8)
 6 display.show(pics.ALL_ARROWS[num])
 7
 8 while True:
 9 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
10 show_random_arrow()

Objective 4 - Animation

Animation
...is achieved with a rapid sequence of images.

You've already seen that the CodeX is quite good at displaying a list of images quickly.

Sometimes even too quickly! You have to slow it down to see all the images clearly.

To animate a spinning arrow you just need to cycle through all 8 positions (0-7) with a short delay between each.

display.show(pics.ALL_ARROWS[0])
sleep(0.1)
display.show(pics.ALL_ARROWS[1])
sleep(0.1)
...Wait! There has to be a better way.

While the above would work, there is a better way. A loop!

But not an infinite loop. You only need to repeat 8 times.

Study the code in the spin_animation() function in the CodeTrek.

Do you see how the variable index starts at 0 and counts up each time the loop repeats?

Experiment with your animation!

What would happen if you changed sleep(0.1) to a smaller value?
Could the arrow be made to spin the other direction?

Move all code to show the random arrow inside the function!

Call your first function!!

The function can be called AFTER it is defined!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 79 of 295

CodeTrek:

 1 from codex import *
 2 # TODO: import sleep function

 3 import random
 4
 5 def spin_animation():

 6 index = 0

 7 while index < 8:

 8 display.show(pics.ALL_ARROWS[index])
 9 sleep(0.1)
10 index = index + 1

11
12 def show_random_arrow():
13 num = random.randrange(8)
14 display.show(pics.ALL_ARROWS[num])
15
16 while True:
17 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
18 # TODO: Call the animation function

19 show_random_arrow()

Goals:

Define a new spin_animation() function with no parameters.

Call the spin_animation() function.

Create a while loop that is NOT infinite.

The while statement must check an index variable.

Remember it's: from time import sleep

Define a new spin_animation() function!

Create a variable called index.

This variable will count up inside the while loop.
It will also be used to access the arrow image from the list.

The while loop will run 8 times.

Each time the index variable will count up one.
When index reaches 8 the loop will stop.

index should increase at the END of the loop!!!!

If index gets increased before selecting an image you will end up with an error.

pics.ALL_IMAGES[8] would error because 8 is OUT OF RANGE!

Make sure you call your new animation function!

To call a function you must use its name followed by an argument list in parentheses.
Even if it has NO arguments, like spin_animation().

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 80 of 295

Tools Found: Loops, Exception, Keyword and Positional Arguments

Solution:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation():
 6 index = 0
 7 while index < 8:
 8 display.show(pics.ALL_ARROWS[index])
 9 sleep(0.1)
10 index = index + 1
11
12 def show_random_arrow():
13 num = random.randrange(8)
14 display.show(pics.ALL_ARROWS[num])
15
16 while True:
17 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
18 spin_animation()
19 show_random_arrow()

Quiz 2 - Indented?

Question 1: Why is the if statement below indented beneath the while?

while True:
 if buttons.is_pressed(BTN_A):
 display.show(pics.ALL_ARROWS[0])

 So that it runs completely inside the loop.

 Because if statements have to be indented.

 So that the arrow is only displayed when a button is pressed.

Question 2: Which condition stops the loop in this code?

index = 0
while index < 8:
 index = index + 1

 The loop stops when index reaches 8.

 An infinite loop never stops.

 The loop stops when index reaches 0.

 The statement index = index + 1 ends the loop.

Question 3: What is show_random_arrow in the code below?

def show_random_arrow():
 num = random.randrange(8)
 display.show(pics.ALL_ARROWS[num])

 A Function

 A String

 A Party

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 81 of 295

 A Loop

Objective 5 - Style Points - Physics Part 1

Your animation is nice...
But it needs more realism! A real Game Spinner starts out fast and slows
down gradually before it stops.

You could measure the weight and friction properties of a real spinner
and code an exact simulation...

For now just use a rough approximation of real-world physics - slowing the
spin animation gradually.

Your first step is to make the animation spin longer.

CONCEPT: Parameters and Arguments

Functions in Python can be defined with a list of parameters.

When you call a function, you can supply values for those parameters.

For example when you call display.show("hello") you are providing the value "hello" to the function.

Values you pass when calling a function are called arguments.

Functions are always defined and called with parentheses, even if there are no parameters.

Change your spin_animation() function to define a count parameter like this:

def spin_animation(count):
 index = 0
 while index < count:
 # ...show img and delay

Instead of always 8 the caller will supply count which can be any number of loops you'd like.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation(count):

 6 index = 0
 7 while index < count:

 8 display.show(pics.ALL_ARROWS[index])
 9 sleep(0.1)
10 index = index + 1
11
12 def show_random_arrow():
13 num = random.randrange(8)
14 display.show(pics.ALL_ARROWS[num])
15
16 while True:
17 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
18 spin_animation(8)

Add a count parameter to your function.

Compare index against count in your while loop.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 82 of 295

19 show_random_arrow()

Goals:

Make your spin_animation() function take one parameter named count.

Compare count in a while loop statement.

Call spin_animation() with an argument of 8.

Tools Found: Computer Simulations, Functions, Parameters, Arguments, and Returns, Keyword and Positional Arguments

Solution:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation(count):
 6 index = 0
 7 while index < count:
 8 display.show(pics.ALL_ARROWS[index])
 9 sleep(0.1)
10 index = index + 1
11
12 def show_random_arrow():
13 num = random.randrange(8)
14 display.show(pics.ALL_ARROWS[num])
15
16 while True:
17 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
18 spin_animation(8)
19 show_random_arrow()

Objective 6 - Unruly Index

Time to increase the number of spins

Right now the Arrow goes through 8 positions. Can you make it keep going around?

Go ahead and bump up the number of spins to 30 in your spin_animation() function call!

 WARNING: You will get an error when you run this.

Debug the Code

Step into the code, and open the console window to inspect your variables. Now that you have your own functions, here are a few
more hints:

The Step In button will enter your function, but if you want to skip over it you can press the Step Over button.

Variables defined inside your function (and parameters like count) are local variables.
You'll find them separately listed in the debug console, as shown here.

You will need to hold the button down on the CodeX when you STEP on the is_pressed() call!

What value does the index variable have when the error occurs?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation(count):

Call spin_animation() with 8 for the count!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 83 of 295

 6 index = 0
 7 while index < count:
 8 display.show(pics.ALL_ARROWS[index])
 9 sleep(0.1)
10 index = index + 1
11
12 def show_random_arrow():
13 num = random.randrange(8)
14 display.show(pics.ALL_ARROWS[num])
15
16 while True:
17 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
18 # TODO: Call spin_animation with 30 count

19 show_random_arrow()

Hint:

You will need to hold a button down on the CodeX when you press the STEP IN button.

Goals:

Call spin_animation() with a parameter count of 30!

Press a CodeX button and let the program error!

Use the debugger Step In button to step into the spin animation.

You will need to hit the debug button again first.

You must step at least 20 times!

Tools Found: Exception, Functions, Locals and Globals, Print Function

Solution:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation(count):
 6 index = 0
 7 while index < count:
 8 display.show(pics.ALL_ARROWS[index])
 9 sleep(0.1)
10 index = index + 1
11
12 def show_random_arrow():
13 num = random.randrange(8)
14 display.show(pics.ALL_ARROWS[num])
15
16 while True:
17 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
18 spin_animation(30)
19 show_random_arrow()

Objective 7 - Tame the Unruly Index

Have you found the error?

The list pics.ALL_ARROWS has just 8 elements, indexed 0 through 7.

When your index variable reaches 8, it is past the end of the list!

Call the spin_animation() function again.

This time set the value of the count parameter to 30!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 84 of 295

How can you keep index in the range 0 - 7?

Here's an idea:

Use another variable called loops to count the total number of repeats.
Keep using index too, but reset it back to 0 when it reaches 8.

NOTE: Beware the difference between = assignment and == comparison operations!

Try running your code, and make sure the Arrow spins more than one complete cycle!

Step through the code also - watch index and loops variables change...

Is your code running properly now?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation(count):
 6 index = 0
 7 loops = 0

 8 while loops < count:

 9 loops = loops + 1

10 display.show(pics.ALL_ARROWS[index])
11 sleep(0.1)
12 index = index + 1
13 if index == 8:
14 index = 0

15
16 def show_random_arrow():
17 num = random.randrange(8)
18 display.show(pics.ALL_ARROWS[num])
19
20 while True:
21 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
22 spin_animation(30)
23 show_random_arrow()

Goals:

Compare loops in a while statement.

Check index for equality == with 8 in an if statement.

Tools Found: list, Assignment, undefined

Create a new loops variable that will keep track of the total loops run.

index will still keep track of the index!

Compare against loops instead of index in the while statement.

Increment loops.

If index goes OUT OF RANGE set it back to 0.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 85 of 295

Solution:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation(count):
 6 index = 0
 7 loops = 0
 8 while loops < count:
 9 loops = loops + 1
10 display.show(pics.ALL_ARROWS[index])
11 sleep(0.1)
12 index = index + 1
13 if index == 8:
14 index = 0
15
16 def show_random_arrow():
17 num = random.randrange(8)
18 display.show(pics.ALL_ARROWS[num])
19
20 while True:
21 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
22 spin_animation(30)
23 show_random_arrow()

Objective 8 - Style Points - Physics Part 2

Spin Down
Now that you can make the animation spin as long as you like, it's time to make the
arrow gradually slow down.

What controls the speed of your animation now?

The sleep(0.1) needs to change, to create longer delays, while the loop repeats.

Right now your code uses the value 0.1
Change it to use a variable!

Add a variable called delay to your spin_animation() function.

Start the delay at 0.05 or 50 milliseconds
Add 0.005 (5 milliseconds) to delay after every sleep(delay)
Increase the number of spins so you can easily see the effect!

Debug the Code

There's a lot going on in this program! Step through and watch the variables as each animation loop runs.

Make sure you understand what's happening with the functions and variables in your program!

Can you see the Arrow slooow dooown gradually?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation(count):
 6 delay = 0.05

 7 index = 0
 8 loops = 0
 9 while loops < count:
10 loops = loops + 1

Create a delay variable that starts at 50 milliseconds.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 86 of 295

11 display.show(pics.ALL_ARROWS[index])
12 # TODO: sleep for the delay

13 delay = delay + 0.005

14 index = index + 1
15 if index == 8:
16 index = 0
17
18 def show_random_arrow():
19 num = random.randrange(8)
20 display.show(pics.ALL_ARROWS[num])
21
22 while True:
23 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
24 spin_animation(30)
25 show_random_arrow()

Goals:

Create a new delay variable and default it to 50 milliseconds.

Sleep for the length of delay instead of a hard-coded value.

Tools Found: Variables, Timing

Solution:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 def spin_animation(count):
 6 delay = 0.05
 7 index = 0
 8 loops = 0
 9 while loops < count:
10 loops = loops + 1
11 display.show(pics.ALL_ARROWS[index])
12 sleep(delay)
13 delay = delay + 0.005
14 index = index + 1
15 if index == 8:
16 index = 0
17
18 def show_random_arrow():
19 num = random.randrange(8)
20 display.show(pics.ALL_ARROWS[num])
21
22 while True:
23 if buttons.is_pressed(BTN_A) or buttons.is_pressed(BTN_B):
24 spin_animation(30)
25 show_random_arrow()

Mission 9 Complete

Take your Game Spinner for a Spin!

Besides being a useful tool for random selection, this project gave you some great tools for making much more powerful programs!

Breaking your program down into functions allows you to do really complex tasks in software, while keeping your code readable.

Sleep for the delay.

Add 5 milliseconds to the delay every loop.

This will slooooow your animation down!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 87 of 295

Divide and Conquer!

Fast button inputs, animation, and simulation! That's how you
code:

Video games
Flight Simulators
Virtual Reality

Excellent work!! Ready for more?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 88 of 295

Mission 10 - Reaction Tester
How fast is your reaction time?
In this project, you will make a device to measure your reaction time!

Create a device that measures the time between:

Bright Pixel LEDs lighting up, and...
A CodeX Button being pressed.

After the measurement is complete, this time will be shown on the display until a button
is pressed to restart the game.

Who has the fastest reaction time?
With a little coding, you're about to find out!

Project Goals:

Give the player a 3-2-1 countdown.
Wait a random delay, so they can't "guess" the timing.
Turn all the pixels GREEN (for go).
Measure the time until a button press occurs.
Show the reaction time on the display.
Wait for a button press, then restart the game.

Ready to get started?

Objective 1 - Milliseconds

For your first step, light up those pixel LEDs! And...

Make it Unpredictable!
You wouldn't want the user to just time their reaction.

That's cheating!
So you need to add a little random delay to keep 'em guessing!
After that, it's LIGHTS ON and see how fast they react.

Let's say you want to wait between 1.000 seconds and 5.000 seconds.

With a 0.001 second resolution. That's 1 millisecond!
...try and guess MY random time? No way!

How can you accomplish that?

You can use the familiar random.randrange() function.

But... you will need to make a few adjustments.

Random Arguments?
The randrange() function can take arguments just like the range function.

If you call it like this: randrange(1, 5) you will get a random integer between 1 and 4.

That's good... but you want millisecond resolution!

Use randrange(1000, 5000) to get milliseconds of delay.

Then you can divide by 1000 for seconds! Perfect!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import random

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 89 of 295

 4
 5 # TODO: Display the Countdown...
 6
 7 # All pixels off, so they're ready to go ON when needed...
 8 pixels.set([BLACK, BLACK, BLACK, BLACK])

 9
10 # Get 1000 to 5000 millisecond delay.
11 ms = random.randrange(1000, 5000)

12
13 # Convert milliseconds to seconds.
14 delay_time = ms / 1000

15 sleep(delay_time)
16
17 # Lights ON: Time to REACT!
18 pixels.set([GREEN, GREEN, GREEN, GREEN])

Goals:

Create a new file named Reaction_Time.

Get a random millisecond value from 1000 to 5000 with randrange().

Divide by 1000 to get seconds!

Light ALL the pixel LEDs GREEN

Use a list of colors to do this in one line!

Tools Found: RGB "pixel" LEDs, Random Numbers, Keyword and Positional Arguments, Ranges, int, list, float

Solution:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 # TODO: Display the Countdown...
 6
 7 # All pixels off, so they're ready to go ON when needed...
 8 pixels.set([BLACK, BLACK, BLACK, BLACK])
 9
10 # Get 1000 to 5000 millisecond delay.
11 ms = random.randrange(1000, 5000)
12
13 # Convert milliseconds to seconds.
14 delay_time = ms / 1000
15 sleep(delay_time)

Setting all the pixels to BLACK turns them all off.

BLACK is the same as RGB (0, 0, 0)

random.randrange(start, stop) produces integers.

You want a float seconds between 1.0 and 5.0
Use randrange() to get milliseconds and convert to seconds!

Convert milliseconds to seconds:

Just divide by 1000!!

Turn all the pixels GREEN after the delay.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 90 of 295

16
17 # Lights ON: Time to REACT!
18 pixels.set([GREEN, GREEN, GREEN, GREEN])

Objective 2 - The Countdown

Countdown!
The game should start by giving the player time to prepare:

Print "3" then "2" then "1" to the display

Then the pixels and LCD should go dark.

And then a random delay before the pixels turn on GREEN!

Here are a couple of display functions you can use:

1. display.clear() - this function clears the display.
2. display.print() - displays text strings like display.show() but scrolls rather than

overwriting text!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 # Clear screen.
 6 display.clear()

 7
 8 # All pixels off.
 9 pixels.set([BLACK, BLACK, BLACK, BLACK])
10
11 display.print(3, scale=6)
12 sleep(1)
13 display.print(2, scale=6)
14 sleep(1)
15 display.print(1, scale=6)
16 sleep(1)
17 display.clear()

18
19 # Get 1000 to 5000 millisecond delay.
20 ms = random.randrange(1000, 5000)
21
22 # Convert milliseconds to seconds.
23 delay_time = ms / 1000
24 sleep(delay_time)
25
26 pixels.set([GREEN, GREEN, GREEN, GREEN])

Goals:

Clear the display when your program first starts.

Print the "3"..."2"..."1" countdown

display.clear() turns the screen black and removes all text.

This will come in handy later when you make the program repeat!

display.print() doesn't clear the screen like display.show() does.

This countdown will stay on the screen until you clear it.
Use the scale keyword argument to make the text BIG!
Delay a bit between counts with sleep()
And don't forget to clear the display after the countdown.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 91 of 295

Tools Found: Timing, str, Keyword and Positional Arguments

Solution:

 1 from codex import *
 2 from time import sleep
 3 import random
 4
 5 # Clear screen.
 6 display.clear()
 7
 8 # All pixels off.
 9 pixels.set([BLACK, BLACK, BLACK, BLACK])
10
11 display.print(3, scale=6)
12 sleep(1)
13 display.print(2, scale=6)
14 sleep(1)
15 display.print(1, scale=6)
16 sleep(1)
17 display.clear()
18
19 # Get 1000 to 5000 millisecond delay.
20 ms = random.randrange(1000, 5000)
21
22 # Convert milliseconds to seconds.
23 delay_time = ms / 1000
24 sleep(delay_time)
25
26 pixels.set([GREEN, GREEN, GREEN, GREEN])

Objective 3 - The Fourth Dimension

You need to measure the time between when the pixels turn ON and when a button is pressed.

CONCEPT: Computer Clocks

Computers rely on electronic clock circuits. Each tick of the CodeX's speedy internal clock moves
it through your code one step at a time. It's really the heartbeat of the computer!

What else does the clock drive?

Time delays in sleep() functions.
Scheduled activities within the CPU.
...everything timing related on the computer.

From the moment you turn ON the CodeX, the clock is always running.

Here's a function in the time module on CodeX that returns the value of a counter.

That counter ticks up 1 every millisecond.
The starting point is arbitrary so it doesn't really have much meaning except for measuring time differences.

start_time = time.ticks_ms()

CONCEPT: import vs from

Until now you have always referenced the sleep() function by importing it from the time module:

from time import sleep

For this Objective, try a different form of import, like this:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 92 of 295

import time
start_time = time.ticks_ms()
time.sleep(1.0)

Reaction time is the time difference between LIGHTS and BUTTONS!

Ready for some good times?

CodeTrek:

 1 from codex import *
 2 import time

 3 import random
 4
 5 # Clear screen.
 6 display.clear()
 7
 8 # All pixels off.
 9 pixels.set([BLACK, BLACK, BLACK, BLACK])
10
11 display.print(3, scale=6)
12 time.sleep(1)

13 display.print(2, scale=6)
14 time.sleep(1)
15 display.print(1, scale=6)
16 time.sleep(1)
17 display.clear()
18
19 # Get 1000 to 5000 millisecond delay.
20 ms = random.randrange(1000, 5000)
21
22 # Convert milliseconds to seconds.
23 delay_time = ms / 1000
24 time.sleep(delay_time)

25
26 pixels.set([GREEN, GREEN, GREEN, GREEN])
27
28 start_time = time.ticks_ms()

29
30 # Wait for button A.
31 while True:
32 if buttons.was_pressed(BTN_A):
33 break

Instead of importing the sleep function from time you can import the module reference.

This allows you to access anything in the time module using "dot notation".

Since you didn't explicitly bring in sleep you will need to use time.sleep() instead of just sleep().

There are a few sleep() calls below you need to fix also!

Since you didn't explicitly bring in sleep you will need to use time.sleep() instead of just sleep().

There are a few sleep() calls below you need to fix also!

Record the start_time just after the lights come on.

...now CodeX is waiting for the human to react :-)

Now wait for the user to press Button A.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 93 of 295

34
35 end_time = time.ticks_ms()

36
37 display.print(start_time)
38 display.print(end_time)

Goals:

Use time.ticks_ms() twice and save the result in two variables :

One must be named start_time

The other must be named end_time

Use the buttons.was_pressed() function to wait for BTN_A.

Print the start_time and end_time after the button press.

Tools Found: CPU and Peripherals, Time Module, import, Variables

Solution:

 1 from codex import *
 2 import time
 3 import random
 4
 5 # Clear screen.
 6 display.clear()
 7
 8 # All pixels off.
 9 pixels.set([BLACK, BLACK, BLACK, BLACK])
10
11 display.print(3, scale=6)
12 time.sleep(1)
13 display.print(2, scale=6)
14 time.sleep(1)
15 display.print(1, scale=6)
16 time.sleep(1)
17 display.clear()
18
19 # Get 1000 to 5000 millisecond delay.
20 ms = random.randrange(1000, 5000)
21
22 # Convert milliseconds to seconds.
23 delay_time = ms / 1000
24 time.sleep(delay_time)
25
26 pixels.set([GREEN, GREEN, GREEN, GREEN])
27
28 start_time = time.ticks_ms()
29
30 # Wait for button A.
31 while True:
32 if buttons.was_pressed(BTN_A):
33 break
34
35 end_time = time.ticks_ms()
36
37 display.print(start_time)
38 display.print(end_time)

As soon as Button A was pressed record the end_time.

Just show start and end on the display.

This won't mean much but you will learn how to use these values soon!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 94 of 295

Objective 4 - Time Differential

You have a start_time and an end_time !
Now how do you calculate the reaction time?

There is one more function from the time module you need to learn about!

elapsed = time.ticks_diff(end, start)

This function gives you the elapsed time between the start_time and end_time.

Wait, but couldn't I just do elapsed = end - start?

That will work most of the time!
See the monotonic tool if you're curious why plain subtraction is dangerous...

Test Your Reaction Time!
This is starting to get fun :-)

CodeTrek:

 1 from codex import *
 2 import time
 3 import random
 4
 5 # Clear screen.
 6 display.clear()
 7
 8 # All pixels off.
 9 pixels.set([BLACK, BLACK, BLACK, BLACK])
10
11 display.print(3, scale=6)
12 time.sleep(1)
13 display.print(2, scale=6)
14 time.sleep(1)
15 display.print(1, scale=6)
16 time.sleep(1)
17 display.clear()
18
19 # Get 1000 to 5000 millisecond delay.
20 ms = random.randrange(1000, 5000)
21
22 # Convert milliseconds to seconds.
23 delay_time = ms / 1000
24 time.sleep(delay_time)
25
26 pixels.set([GREEN, GREEN, GREEN, GREEN])
27
28 start_time = time.ticks_ms()
29
30 # Wait for button A.
31 while True:
32 if buttons.was_pressed(BTN_A):
33 break
34
35 end_time = time.ticks_ms()
36
37 reaction_time = time.ticks_diff(end_time, start_time)

38
39 display.print("Reaction time:")

Use time.ticks_diff() here.

The function takes two parameters.

The first should be end_time.
The second should be start_time.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 95 of 295

40 display.print(reaction_time)
41 display.print("milliseconds")

Goals:

Use time.ticks_diff() to measure the time between start_time and end_time.

Print the reaction time on the display

Tools Found: Time Module, Monotonic

Solution:

 1 from codex import *
 2 import time
 3 import random
 4
 5 # Clear screen.
 6 display.clear()
 7
 8 # All pixels off.
 9 pixels.set([BLACK, BLACK, BLACK, BLACK])
10
11 display.print(3, scale=6)
12 time.sleep(1)
13 display.print(2, scale=6)
14 time.sleep(1)
15 display.print(1, scale=6)
16 time.sleep(1)
17 display.clear()
18
19 # Get 1000 to 5000 millisecond delay.
20 ms = random.randrange(1000, 5000)
21
22 # Convert milliseconds to seconds.
23 delay_time = ms / 1000
24 time.sleep(delay_time)
25
26 pixels.set([GREEN, GREEN, GREEN, GREEN])
27
28 start_time = time.ticks_ms()
29
30 # Wait for button A.
31 while True:
32 if buttons.was_pressed(BTN_A):
33 break
34
35 end_time = time.ticks_ms()
36
37 reaction_time = time.ticks_diff(end_time, start_time)
38
39 display.print("Reaction time:")
40 display.print(reaction_time)
41 display.print("milliseconds")

Objective 5 - Let's Keep Playing

Play Again?
Great job so far! The "reaction game" is fun, but what if you want to play more than once?

Make the game wait for a button press, then start again!

You need a loop that contains all the code from "3-2-1" on down.
Add code to wait for a button press before continuing the loop.

print() the reaction time to the display!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 96 of 295

Hey! You already have code that waits for a button press...

Feel free to copy that "wait for BTN_A" code.

Go ahead and place everything after import random inside a while loop.

Remember you can select it all and use the TAB key to indent a whole block
You have been using the Editor Shortcuts, right?

CodeTrek:

 1 from codex import *
 2 import time
 3 import random
 4
 5 while True:

 6 display.print("Press Button A")

 7 # wait for button A
 8 while True:
 9 if buttons.was_pressed(BTN_A):
10 break

11
12 # Clear screen.
13 display.clear()
14
15 # All pixels off.
16 pixels.set([BLACK, BLACK, BLACK, BLACK])
17
18 display.print(3, scale=6)
19 time.sleep(1)
20 display.print(2, scale=6)
21 time.time.sleep(1)
22 display.print(1, scale=6)
23 time.sleep(1)
24 display.clear()
25
26 # Get 1000 to 5000 millisecond delay.
27 ms = random.randrange(1000, 5000)
28
29 # Convert milliseconds to seconds.
30 delay_time = ms / 1000
31 time.sleep(delay_time)
32
33 pixels.set([GREEN, GREEN, GREEN, GREEN])
34
35 start_time = time.ticks_ms()
36
37 # Wait for button A.
38 while True:
39 if buttons.was_pressed(BTN_A):
40 break
41
42 end_time = time.ticks_ms()
43
44 reaction_time = time.ticks_diff(end_time, start_time)
45
46 display.print("Reaction time:")

Add an infinite while True loop so that you can keep playing the game!

Tell the user it is time to press Button A!

Wait for Button A before moving into the game!

(even on the first run through)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 97 of 295

47 display.print(reaction_time)
48 display.print("milliseconds")

Goals:

Add an infinite while True loop to keep playing your game.

Wait for the user to press BTN_A to play again.

Your code should now have 3 while loops in total!

Tools Found: Loops, Editor Shortcuts

Solution:

 1 from codex import *
 2 import time
 3 import random
 4
 5 while True:
 6 display.print("Press Button A")
 7 # wait for button A
 8 while True:
 9 if buttons.was_pressed(BTN_A):
10 break
11
12 # Clear screen.
13 display.clear()
14
15 # All pixels off.
16 pixels.set([BLACK, BLACK, BLACK, BLACK])
17
18 display.print(3, scale=6)
19 time.sleep(1)
20 display.print(2, scale=6)
21 time.sleep(1)
22 display.print(1, scale=6)
23 time.sleep(1)
24 display.clear()
25
26 # Get 1000 to 5000 millisecond delay.
27 ms = random.randrange(1000, 5000)
28
29 # Convert milliseconds to seconds.
30 delay_time = ms / 1000
31 time.sleep(delay_time)
32
33 pixels.set([GREEN, GREEN, GREEN, GREEN])
34
35 start_time = time.ticks_ms()
36
37 # Wait for button A.
38 while True:
39 if buttons.was_pressed(BTN_A):
40 break
41
42 end_time = time.ticks_ms()
43
44 reaction_time = time.ticks_diff(end_time, start_time)
45
46 display.print("Reaction time:")
47 display.print(reaction_time)
48 display.print("milliseconds")

Objective 6 - Reduce Repetition

Take a look at your code.

Do you notice a block of code that's repeated?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 98 of 295

It works just fine, but you can make this code more readable and maintainable.

CONCEPT: Don't Repeat Yourself (DRY)

Here is ancient coding wisdom:

Never write the same code twice.

Okay, alright, a little repetition isn't awful, but if you find yourself typing the same code over and over, just think how much work it will
be to change it (or fix a bug in it) in the future.

Instead, let your programming tools (like functions) do the work!

All that copy-and-paste business? Nah, make a function instead!

CodeTrek:

 1 from codex import *
 2 import time
 3 import random
 4
 5 def wait_button():

 6 # Wait for button A.
 7 while True:
 8 if buttons.was_pressed(BTN_A):
 9 break
10
11 while True:
12 display.print("Press Button A")
13 wait_button()

14
15 # Clear screen.
16 display.clear()
17
18 # All pixels off.
19 pixels.set([BLACK, BLACK, BLACK, BLACK])
20
21 display.print(3, scale=6)
22 time.sleep(1)
23 display.print(2, scale=6)
24 time.sleep(1)
25 display.print(1, scale=6)
26 time.sleep(1)
27 display.clear()
28
29 # Get 1000 to 5000 millisecond delay.
30 delay_time = random.randrange(1000, 5000) / 1000

31 time.sleep(delay_time)
32
33 pixels.set([GREEN, GREEN, GREEN, GREEN])
34
35 start_time = time.ticks_ms()
36
37 wait_button()

Make the wait_button() function.

Then move all the code to wait for Button A inside it!

Wait on first load.

You can divide by 1000 here if you prefer.

That will just reduce a line of code...

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 99 of 295

38
39 end_time = time.ticks_ms()
40
41 reaction_time = time.ticks_diff(end_time, start_time)
42
43 display.print("Reaction time:")
44 display.print(reaction_time)
45 display.print("milliseconds")

Goals:

Create a function called wait_button().

Call the wait_button() function twice in your code.

Tools Found: Readability, Functions

Solution:

 1 from codex import *
 2 import time
 3 import random
 4
 5 def wait_button():
 6 # Wait for button A.
 7 while True:
 8 if buttons.was_pressed(BTN_A):
 9 break
10
11 while True:
12 display.print("Press Button A")
13 wait_button()
14
15 # Clear screen.
16 display.clear()
17
18 # All pixels off.
19 pixels.set([BLACK, BLACK, BLACK, BLACK])
20
21 display.print(3, scale=6)
22 time.sleep(1)
23 display.print(2, scale=6)
24 time.sleep(1)
25 display.print(1, scale=6)
26 time.sleep(1)
27 display.clear()
28
29 # Get 1000 to 5000 millisecond delay.
30 delay_time = random.randrange(1000, 5000) / 1000
31 time.sleep(delay_time)
32
33 pixels.set([GREEN, GREEN, GREEN, GREEN])
34
35 start_time = time.ticks_ms()
36
37 wait_button()
38
39 end_time = time.ticks_ms()
40
41 reaction_time = time.ticks_diff(end_time, start_time)
42
43 display.print("Reaction time:")
44 display.print(reaction_time)
45 display.print("milliseconds")

Quiz 1 - Quiz Timing

Wait again after the pixels turn GREEN.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 100 of 295

Question 1: How many milliseconds are in a second?

 1000

 100

 0.001

 1000000

Question 2: Select the three correct statements about functions.

 They help keep your code organized.

 You can reuse them multiple times.

 It is easier to make a change in one place than in repeated code.

 They ensure values are always increasing monotonically.

Question 3: What does the time.ticks_diff(end, start) function do?

 It returns the time difference between start and end.

 It changes the clock on your computer by the diff.

 It predicts the end of time given a start time.

Objective 7 - No Cheating

Fix a BUG!
Oh No!! Users are pressing the button during the delay and getting ULTRA fast times.

The buttons.was_pressed() function is always listening. Even during the random delay...

So how can you stop it?

Check buttons.was_pressed() JUST before turning on the GREEN light!

Remember from the CodeX Buttons Toolbox help, the was_pressed() function remembers whether the button was pressed
since the last time it was called. That means it resets to "not-pressed" after you call it!
So call buttons.was_pressed(BTN_A) to reset the button state and prevent cheating!

Make it cheat-proof!

CodeTrek:

 1 from codex import *
 2 import time
 3 import random
 4
 5 def wait_button():
 6 # Wait for button A.
 7 while True:
 8 if buttons.was_pressed(BTN_A):
 9 break
10
11 while True:
12 display.print("Press Button A")
13 wait_button()
14
15 # Clear screen.
16 display.clear()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 101 of 295

17
18 # All pixels off.
19 pixels.set([BLACK, BLACK, BLACK, BLACK])
20
21 display.print(3)
22 display.print(2)
23 display.print(1)
24
25 # Get 1000 to 5000 millisecond delay.
26 delay_time = random.randrange(1000, 5000) / 1000
27 time.sleep(delay_time)
28
29 # Reset button state to prevent cheating
30 buttons.was_pressed(BTN_A)

31
32 pixels.set([GREEN, GREEN, GREEN, GREEN])
33
34 start_time = time.ticks_ms()
35
36 wait_button()
37
38 end_time = time.ticks_ms()
39
40 reaction_time = time.ticks_diff(end_time, start_time)
41
42 display.print("Reaction time:")
43 display.print(reaction_time)
44 display.print("milliseconds")

Goal:

Reset the buttons.was_pressed(BTN_A) just before setting the pixels to GREEN.

Tools Found: CodeX Buttons

Solution:

 1 from codex import *
 2 import time
 3 import random
 4
 5 def wait_button():
 6 # Wait for button A.
 7 while True:
 8 if buttons.was_pressed(BTN_A):
 9 break
10
11 while True:
12 display.print("Press Button A")
13 wait_button()
14
15 # Clear screen.
16 display.clear()
17
18 # All pixels off.
19 pixels.set([BLACK, BLACK, BLACK, BLACK])
20
21 display.print(3, scale=6)
22 time.sleep(1)
23 display.print(2, scale=6)
24 time.sleep(1)
25 display.print(1, scale=6)
26 time.sleep(1)
27 display.clear()
28
29 # Get 1000 to 5000 millisecond delay.

Calling buttons.was_pressed() here will reset the condition and only accept NEW presses.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 102 of 295

30 delay_time = random.randrange(1000, 5000) / 1000
31 time.sleep(delay_time)
32
33 # Reset button state to prevent cheating
34 buttons.was_pressed(BTN_A)
35
36 pixels.set([GREEN, GREEN, GREEN, GREEN])
37
38 start_time = time.ticks_ms()
39
40 wait_button()
41
42 end_time = time.ticks_ms()
43
44 reaction_time = time.ticks_diff(end_time, start_time)
45
46 display.print("Reaction time:")
47 display.print(reaction_time)
48 display.print("milliseconds")

Mission 10 Complete

Impeccable Timing!
Computers measure time in all types of applications.

Football play clocks and stop watches for other sports.
Electronic Drum Machines
Microwave Oven timers
Alarm clocks

Time to move on?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 103 of 295

Mission 11 - Spirit Level
Level Up!
How level is your desk or table?

Write some code to find out! In this project you'll build a spirit level!

You will create a digital level using the CodeX's built-in accelerometer and display. You'll physically rotate the CodeX to move the
digital "bubble" on the display!

Project Goals:

Display a numeric "tilt" value from the accelerometer.
Scale the raw tilt value to show 0° to 90° incline.
Replace the number display with a graphical ball simulation!

Ready to get started?

Objective 1 - Accel

First step is to find the accelerometer.

The CodeX uses a 3-axis accelerometer to detect orientation.

The 3 axes are X, Y, and Z.

Take a look at the front of your CodeX just below the display. You should see a little 3-axis diagram that shows all three axes.

Just above the 3-axis diagram is the tiny little accelerometer chip!

Goals:

Create a new file named Spirit_Level.

Find the CodeX's accelerometer in the 3D viewer.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 104 of 295

Also check out the 3-axis diagram just below it!

Tools Found: Accelerometer

Solution:

N/A

Objective 2 - Tilt-o-Matic

The next step is to read the accelerometer.

When you read() from the accelerometer it returns a tuple (x, y, z)

A tuple is a lot like a list! The only real difference is that you can't change the values in a tuple.

This is an example of a tuple: (0, 0, 0)

Notice it uses () instead of [] like a list!

This is how you read from the CodeX accelerometer:

val = accel.read() # ex: val is (0, 0, -16383)

Using the above example, the raw value of x would be 0. You can access the x value with val[0].

Acceleration Values

The tuple has non-zero values if there is acceleration detected!

When the CodeX is not moving, the only acceleration it feels is the earth's gravity.
That will come in handy for this project - Earth's gravity is the ultimate authority on "Level" after all.
The full force of gravity (1g) will show up as: +/- 16383

If you move or shake the CodeX, you can create larger acceleration values! In the next step, you'll add an if statement to make sure
out-of-range values don't mess things up.

Follow the CodeTrek to write some test code...

Run your code and tilt your CodeX to watch values change!
CodeTrek:

1 from codex import *
2 from time import sleep
3
4 while True:
5 val = accel.read()

6 display.print(val[0])

7 sleep(0.2)

Goals:

Read a tuple from the accelerometer.

Print the x values on the display.

Be sure to tilt your CodeX in the x direction.

Give yourself time to read the values as they scroll!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 105 of 295

Use the built-in accel.read() to assign an (x, y, z) tuple to a variable.

Access the x value of the tuple using the 0 index!

Example: val[0]

Tools Found: Accelerometer, tuple, list

Solution:

1 from codex import *
2 from time import sleep
3
4 while True:
5 val = accel.read()
6 display.print(val[0])
7 sleep(0.2)

Objective 3 - Scale to Degrees

To get an accurate digital reading, you need real units of measure!

If a protractor is placed horizontally on a level surface, 0° is level.

Make a digital level that shows degrees

To start with:

x should be between -16384 and 16384 when only gravity acts on it!

The tricky part is converting from the raw value to degrees.

In the code below, do you see how x / 16384 will be a fraction
between -1 and +1?
First you have to make sure it doesn't exceed those limits!
Then use a bit of trigonometry * to calculate the angle.

* If you haven't learned this math yet, don't worry! You can just type in the code as shown. But if you're interested to
know how it works, see the Hints for more info!

 # Scale the value to +/- 1.0
 scaled = (tilt_x / 16384)

 # Cap max and min value
 scaled = min(max(scaled, -1), 1)

 # Calculate degrees
 degrees = math.asin(scaled) * 180 / math.pi

 # Just an integer, please
 degrees = int(degrees)

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import math

 4
 5 while True:
 6 val = accel.read()
 7
 8 # Get only the x value

Using some math

This is for the angle calculation below. Relax... the math is here to help you!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 106 of 295

 9 tilt_x = val[0]
10
11 # Scale the value to +/- 1.0
12 scaled = (tilt_x / 16384)

13
14 # Cap max and min value
15 scaled = min(max(scaled, -1), 1)

16
17 # Calculate degrees
18 degrees = math.asin(scaled) * 180 / math.pi

19
20 # Just an integer, please
21 degrees = int(degrees)

22
23 display.print(degrees)
24
25 sleep(0.2)

Hint:

Calculating the Angle
Earth's gravity is pulling downward. So as you tilt CodeX, you're changing the angle between the X-axis and the actual gravity
axis pointing down (Z-axis in pic below)

When X is pointing straight down (90°) it is the same as the Z-axis.

When X is horizontal (0°), there is no Z-axis component (Z=0)

a

y

z
16384

The sine function relates the opposite and hypotenuse to the angle "a":

To calculate the angle "a" we need to use inverse sine, which is math.asin()

a = math.asin(z / 16384)

The max resting value of the accelerometer should be 16383

So this fraction should be less than 1.0

Bonus Built-ins!

Restrict scaled to a max of 1 and a min of -1

Those min() and max() functions are Python built-ins

The math.asin() function returns an angle in radians.

Multiply by 180 / math.pi to convert that to degrees.
Check hints for more detail on the trig if you're interested!

We want the degree value as an int not a float!

sin(a) =

16384
Z

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 107 of 295

That gives us an angle in Radians. Convert this to degrees as follows:

Goals:

Create a scaled value with this formula: (tilt_x / 16384)

Use the min() and max() built-in functions to limit the scaled value to ±1

Convert the scaled value to degrees using math.asin() and math.pi.

Tools Found: Built-In Functions, Accelerometer, int

Solution:

 1 from codex import *
 2 from time import sleep
 3 import math
 4
 5 while True:
 6 val = accel.read()
 7
 8 # Get only the x value
 9 tilt_x = val[0]
10
11 # Scale the value to +/- 1.0
12 scaled = (tilt_x / 16384)
13
14 # Cap max and min value
15 scaled = min(max(scaled, -1), 1)
16
17 # Calculate degrees
18 degrees = math.asin(scaled) * 180 / math.pi
19
20 # Just an integer, please
21 degrees = int(degrees)
22
23 display.print(degrees)
24
25 sleep(0.2)

Objective 4 - Static Ball

Time to learn a little about drawing on the display!!

Here are the functions you will need for your spirit level:

Function Description
display.fill(color) Fill the display with a color
display.draw_line(x1, y1, x2, y2, color) Draw a line from (x1, y1) to (x2, y2)
display.draw_circle(x, y, radius, color) Draw a circle with center at (x, y)

CONCEPT: The Display

The CodeX LCD display is 240 pixels x 240 pixels

Each tiny pixel works JUST like the 4 RGB LED pixels at the top of the CodeX.

x in the (x, y) is the display width
y is the display height

See the image at right for a visual.

deg = rad ×

π
180

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 108 of 295

Now type in the code from the CodeTrek!!

This Objective will just be a "static" drawing at first... Next you'll hook it into the
accelerometer values!

You will get way more drawing fun in later lessons!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import math
 4
 5 CENTER = 120

 6
 7 # Create a center line on the display
 8 display.fill(WHITE)

 9 display.draw_line(CENTER, 0, CENTER, 105, BLACK)
10 display.draw_line(CENTER, 135, CENTER, 239, BLACK)

11
12 while True:
13 val = accel.read()
14
15 # Get only the x value
16 tilt_x = val[0]
17
18 # Scale the value to +/- 1.0
19 scaled = (tilt_x / 16384)
20
21 # Cap max and min value
22 scaled = min(max(scaled, -1), 1)
23
24 # Calculate degrees
25 degrees = math.asin(scaled) * 180 / math.pi
26
27 # Just an integer, please
28 degrees = int(degrees)
29
30 # Draw the ball
31 display.draw_circle(CENTER, CENTER, 15, ORANGE)

32
33 sleep(0.2)

Goals:

Use display.fill() to color the display WHITE.

Create a center line with display.draw_line().

The center x and center y pixel is 120!

Start by making the whole display WHITE.

Add a center line to see if your ball is level.

It is broken into two parts to let the ball pass through its middle.

Draw a circle to represent your ball.

This ball will move left and right on the display.
If the ball is in the center that is level.

Right now the ball will just stay in the center!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 109 of 295

Create the level indicator with display.draw_circle().

Tools Found: Display, Accelerometer

Solution:

 1 from codex import *
 2 from time import sleep
 3 import math
 4
 5 CENTER = 120
 6
 7 # Create a center line on the display
 8 display.fill(WHITE)
 9 display.draw_line(CENTER, 0, CENTER, 105, BLACK)
10 display.draw_line(CENTER, 135, CENTER, 239, BLACK)
11
12 while True:
13 val = accel.read()
14
15 # Get only the x value
16 tilt_x = val[0]
17
18 # Scale the value to +/- 1.0
19 scaled = (tilt_x / 16384)
20
21 # Cap max and min value
22 scaled = min(max(scaled, -1), 1)
23
24 # Calculate degrees
25 degrees = math.asin(scaled) * 180 / math.pi
26
27 # Just an integer, please
28 degrees = int(degrees)
29
30 # Draw the ball
31 display.draw_circle(CENTER, CENTER, 15, ORANGE)
32
33 sleep(0.2)

Objective 5 - Rolling Stone

Time to make that ball move
You already know that the CENTER X value of the display is 120.

You also have a degrees value from -90 to 90.

Putting it all together, check it!

When degrees == 0 you want your ball right in the center of the display.

When degrees == 0?
x = degrees + CENTER # x = (0 + 120) = 120

Let's check the other extremes:

When degrees == -90?
x = degrees + CENTER # x = (-90 + 120) = 30

Your circle's radius is 15 pixels, so if you put your circle's center at (30, 120) you will still be able to draw the whole circle. Checks
out!

When degrees == +90?
x = degrees + CENTER # x = (90 + 120) = 210

Same thing if you put your circle's center at (210, 120)!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 110 of 295

This is gonna work nicely!
CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import math
 4
 5 CENTER = 120
 6
 7 # Create a center line on the display
 8 display.fill(WHITE)
 9 display.draw_line(CENTER, 0, CENTER, 105, BLACK)
10 display.draw_line(CENTER, 135, CENTER, 239, BLACK)
11
12 while True:
13 val = accel.read()
14
15 # Get only the x value
16 tilt_x = val[0]
17
18 # Scale the value to +/- 1.0
19 scaled = (tilt_x / 16384)
20
21 # Cap max and min value
22 scaled = min(max(scaled, -1), 1)
23
24 # Calculate degrees
25 degrees = math.asin(scaled) * 180 / math.pi
26
27 # Just an integer, please
28 degrees = int(degrees)
29
30 x = CENTER + degrees

31
32 # Draw the new circle
33 display.draw_circle(x, CENTER, 15, ORANGE)

34
35 sleep(0.2)

Goals:

Create a variable named x that will be the circle's center.

Use your x variable in the display.draw_circle() function!

Solution:

 1 from codex import *
 2 from time import sleep
 3 import math
 4
 5 CENTER = 120
 6
 7 # Create a center line on the display
 8 display.fill(WHITE)
 9 display.draw_line(CENTER, 0, CENTER, 105, BLACK)
10 display.draw_line(CENTER, 135, CENTER, 239, BLACK)
11

Calculate the x value of the circle by adding 120.

If degrees is 0 the x value will be 120.

That is the center of the display!!

Use your new calculated x value as the circle's center x value!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 111 of 295

12 while True:
13 val = accel.read()
14
15 # Get only the x value
16 tilt_x = val[0]
17
18 # Scale the value to +/- 1.0
19 scaled = (tilt_x / 16384)
20
21 # Cap max and min value
22 scaled = min(max(scaled, -1), 1)
23
24 # Calculate degrees
25 degrees = math.asin(scaled) * 180 / math.pi
26
27 # Just an integer, please
28 degrees = int(degrees)
29
30 x = CENTER + degrees
31
32 # Draw the new circle
33 display.draw_circle(x, CENTER, 15, ORANGE)
34
35 sleep(0.2)

Quiz 1 - Accelisplay

Question 1: If the accelerometer returns an (x, y, z) tuple then what direction force is the d variable below?

val = accel.read()
d = val[1]

 y

 z

 x

Question 2: How many pixels is the CodeX display (width x height)?

 240 x 240

 120 x 120

 1080 x 1080

Question 3: Why is tilt divided by 16384 in the code below?

val = accel.read()
tilt = val[0]
scaled = (tilt / 16384)

 16384 is the max expected value for tilt, so (tilt / 16384) will be ≤ 1

 16384 is the universal gravity wave coefficient.

 There are 16384 accelerons per degree.

Objective 6 - Eraser First

Spirit Level - Final Touches
What is going on? It's not working quite right yet...

Why is the ball always drawing on top of itself?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 112 of 295

It's because you are never erasing it!

Making a circle on the display just changes the color of the pixels you are drawing.

Covering Your Tracks
To erase the ball, you just need to draw a WHITE circle on top of the old one!

That does mean you need to keep track of where the old one is...

To the CodeTrek!
CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 import math
 4
 5 CENTER = 120
 6
 7 # Create the center line on the display
 8 display.fill(WHITE)
 9 display.draw_line(CENTER, 0, CENTER, 105, BLACK)
10 display.draw_line(CENTER, 135, CENTER, 239, BLACK)
11
12 x = CENTER

13
14 while True:
15 val = accel.read()
16
17 # Get only the x value
18 tilt_x = val[0]
19
20 # Scale the value to +/- 1.0
21 scaled = (tilt_x / 16384)
22
23 # Cap max and min value
24 scaled = min(max(scaled, -1), 1)
25
26 # Calculate degrees
27 degrees = math.asin(scaled) * 180 / math.pi
28
29 # Just an integer, please
30 degrees = int(degrees)
31
32 # Erase the old circle
33 display.draw_circle(x, CENTER, 15, WHITE)

34
35 x = CENTER + degrees
36
37 # Draw the new circle
38 display.draw_circle(x, CENTER, 15, ORANGE)
39
40 sleep(0.2)

Goal:

Draw a WHITE circle over the old one to erase it BEFORE drawing the new circle!

Solution:

Define the variable x before the while loop.

That will make sure it is available for the next loop so you can erase your old circle!

Draw a WHITE circle on top of the old colored circle to erase it!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 113 of 295

 1 from codex import *
 2 from time import sleep
 3 import math
 4
 5 CENTER = 120
 6
 7 # Create the center line on the display
 8 display.fill(WHITE)
 9 display.draw_line(CENTER, 0, CENTER, 105, BLACK)
10 display.draw_line(CENTER, 135, CENTER, 239, BLACK)
11
12 x = CENTER
13
14 while True:
15 val = accel.read()
16
17 # Get only the x value
18 tilt_x = val[0]
19
20 # Scale the value to +/- 1.0
21 scaled = (tilt_x / 16384)
22
23 # Cap max and min value
24 scaled = min(max(scaled, -1), 1)
25
26 # Calculate degrees
27 degrees = math.asin(scaled) * 180 / math.pi
28
29 # Just an integer, please
30 degrees = int(degrees)
31
32 # Erase the old circle
33 display.draw_circle(x, CENTER, 15, WHITE)
34
35 x = CENTER + degrees
36
37 # Draw the new circle
38 display.draw_circle(x, CENTER, 15, ORANGE)
39
40 sleep(0.2)

Mission 11 Complete

Really, Level With Me!
Take a few minutes to play with the spirit level. If you disconnect the USB
cable and add batteries, you can take the level with you anywhere you
want!

Accelerometers used as tilt sensors are important and used every day for:

Controlling your phone screen (landscape or portrait)
Building a house
Flying Airplanes
Keeping Solar Panels pointed at the Sun
...and tons of other applications!

Congratulations, you're leveling-up!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 114 of 295

Mission 12 - Night Light
Make a smart Night Light that turns ON when the room gets dark.

You'll use the CodeX's built-in light sensor to detect ambient light and the pixels as a
night light!

Project Goals: create two versions of the Night Light:

1. Simple on/off control

Light turns ON when sensor crosses a pre-set "dark threshold".

2. Variable dimming

The darker it gets, the brighter it shines!

Ready to light up the night?

"May it be a light to you in dark places, when all other lights go out."

Galadriel (J.R.R. Tolkien), Fellowship of the Ring

Objective 1 - Let There Be Sensor

So you want to make a night light?
That is going to be easy with the CodeX!

The CodeX has its own light sensor

The CodeX light sensor can read the amount of ambient light that reaches it.

Just like your eyes, it can detect the light within the visible wavelengths!

It is also really easy to use.

Just a little Python code and you're sensing light!

The light sensor is on the front of the CodeX just to the right of the display:

Goals:

Create a new file named NightLight.

Find the digital ambient light sensor in the 3D view.

Tools Found: Light Sensor, Display

Solution:

N/A

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 115 of 295

Objective 2 - Light Sensing Code

Write some code to "read" from the light sensor!

Getting a basic reading is pretty easy...

value = light.read()

The light sensor converts light level into a digital value.

dark = lower values
bright = higher values

The light.read() function returns an ADC value. It's a 16 bit number, so the max value is (216 - 1) or 65,535.

Any value below 2000 or so is pretty dark!

Run your program
And try shading the light sensor with your hand!!

What happens to the values?

CodeTrek:

1 from codex import *
2
3 while True:
4 value = # TODO: read from light sensor

5 display.print(value)

Goal:

Read from the ambient light sensor with light.read()

Tools Found: Light Sensor, Analog to Digital Conversion, Binary Numbers

Solution:

1 from codex import *
2
3 while True:
4 value = light.read()
5 display.print(value)
6

Objective 3 - Pixel Filler

Now you need to make a light that you can control.

The Code in the Arena

Some big Arenas and NFL stadiums have huge LED lights controlled by code running on tiny wireless electronic boards
like the CodeX!

Use light.read()!

Start by printing the values.

You will remove this in the next step!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 116 of 295

For your Night Light, rather than showing an image or text, just light up ALL the RGB pixel LEDs on the CodeX!

You will find out how bright they can be soon!

Here is a new function for you to use:

pixels.fill(WHITE)

It is the same as setting all 4 pixels like this:

pixels.set([WHITE, WHITE, WHITE, WHITE])

Checking a Threshold

IF it's dark, turn ON the light! ELSE, turn it OFF.

The CodeTrek will guide you if you need a refresher on control flow in Python.

Test Your Nightlight!

CodeTrek:

 1 from codex import *
 2
 3 while True:
 4 value = light.read()
 5
 6 if value < 2000:

 7 # It's getting dark in here!
 8 # TODO: fill all pixels WHITE

 9 else:
10 # It's bright enough now.
11 # TODO: turn off all pixels

Hints:

Finding Your Threshold
The value 2000 is just an approximate value, based on typical readings in a room with a "moderate" amount of ambient light.

Feel free to adjust as needed for your environment.

Not Dark Enough?

If you have a bright environment, such as a window with sunlight streaming in, it may be difficult to completely shade
the sensor.

Try moving to a darker area or using an opaque material to completely cover the sensor.

Goals:

Use the pixels.fill() function to set all the pixels WHITE.

Use an if... else control flow statement to check your light level against a threshold.

Adjust this value for your environment.

2000 is just an approximate setting.

Use the new pixels.fill() function!

Turning all the pixels BLACK will turn them off.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 117 of 295

Tools Found: Branching

Solution:

 1 from codex import *
 2
 3 while True:
 4 value = light.read()
 5
 6 if value < 2000:
 7 pixels.fill(WHITE)
 8 else:
 9 pixels.fill(BLACK)

Objective 4 - Dimmable Light Sensor

Dim It!
Your night light is either fully ON or completely OFF.

But if it's only slightly dark, just a little light will do...

Make the night light gradually brighten as the room gets darker!

But how do you dim the pixels?

Well, pixels.fill() has an optional argument called brightness.

brightness takes a value from 0 to 100.

Here is how you use it:

pixels.fill(WHITE, brightness=20)

🚨 🚨 Warning!! 🚨 🚨
Pixels can get VERY bright!

Be careful not to look directly at them at higher brightness levels!

CodeTrek:

 1 from codex import *
 2
 3 # The "ambient" room light level.
 4 # Darker than this and the nightlight should shine!
 5 ROOM = 15000

 6
 7 while True:
 8 value = light.read()
 9
10 if value < ROOM:
11 scaled = (value / ROOM) * 20

Define a constant named ROOM for the point where the night light FIRST turns ON!

Scale the light sensor value by the new ROOM value.

We are going to make the max brightness 20 percent.

Any more than that is just blinding!!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 118 of 295

12
13 level = int(scaled)

14
15 pixels.fill(WHITE, brightness=level)

16 else:
17 pixels.fill(BLACK)

Hints:

Test Your Room
Try light.read() to find out what your ROOM level should be.

Expect a Problem!
The nightlight won't work properly...YET!

Proceed to the next Objective for a fix :-)

Goal:

Use pixels.fill() with the brightness parameter.

You must use a keyword argument (brightness must be spelled out inside pixels.fill())

Tools Found: Default function parameters, Keyword and Positional Arguments, Constants, int

Solution:

 1 from codex import *
 2
 3 # The "ambient" room light level.
 4 # Darker than this and the nightlight should shine!
 5 ROOM = 15000
 6
 7 while True:
 8 value = light.read()
 9
10 if value < ROOM:
11 scaled = (value / ROOM) * 20
12
13 level = int(scaled)
14
15 pixels.fill(WHITE, brightness=level)
16 else:
17 pixels.fill(BLACK)

Quiz 1 - Light Test

Question 1: What does light.read() do in the CodeX built-in library?

 Returns the level of ambient light.

 Checks if there is enough light for you to read.

 Reads the light level of the display.

Question 2: What are the colors of the 4 CodeX pixels after running this code?

Only want the int value, not a fraction.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 119 of 295

from codex import *
pixels.set([BLUE, BLUE, BLUE, BLUE])
pixels.set(2, RED)

 BLUE, BLUE, RED, BLUE

 OFF, OFF, RED, OFF

 BLUE, BLUE, BLUE, BLUE

 BLUE, RED, BLUE, BLUE

Objective 5 - Reversed

The light is getting darker as the room gets darker

That is not very helpful...

You want it to get brighter as the room gets darker.

You will need to reverse the impact of the light sensor value.

Take some time to examine your code...

Consider This:

Say value / ROOM is 0.2

Try subtracting it from 1: (1 - 0.2) is 0.8
So, if you subtract the ratio from 1 it will make the scaled variable get bigger as the sensor value gets smaller.

scaled = (1 - value / ROOM) * 20

You can do this!

CodeTrek:

 1 from codex import *
 2
 3 # The "ambient" room light level.
 4 # Darker than this and the nightlight should shine!
 5 ROOM = 15000
 6
 7 while True:
 8 value = light.read()
 9
10 if value < ROOM:
11 scaled = (1 - value / ROOM) * 20

12
13 level = int(scaled)
14
15 pixels.fill(WHITE, brightness=level)
16 else:
17 pixels.fill(BLACK)

Goal:

Subtract the ratio from 1 to reverse the impact of your sensor reading.

The "minus sign" takes your light reading in the negative direction...

More bright, LESS light!

Reverse the sensor value's impact by subtracting the ratio from 1.

This will make the light get brighter as the room gets darker.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 120 of 295

Solution:

 1 from codex import *
 2
 3 # The "ambient" room light level.
 4 # Darker than this and the nightlight should shine!
 5 ROOM = 15000
 6
 7 while True:
 8 value = light.read()
 9
10 if value < ROOM:
11 scaled = (1 - value / ROOM) * 20
12
13 level = int(scaled)
14
15 pixels.fill(WHITE, brightness=level)
16 else:
17 pixels.fill(BLACK)

Mission 12 Complete

Welcome to Smart Lighting
This project has introduced you to an area with lots of potential for
improving the world!

Light Sensors and LED lights controlled with code can reduce energy consumed and
make lighting more awesome!

This code can help a lot of real-world applications:

Outdoor Lighting
Street Lights, Parking lots, Home lighting

Stadium Lights
Even controlling the light color so it looks better on camera

Indoor Lighting
Sensing daylight from windows and skylights is called Daylight Harvesting -
it saves energy!
That's exactly what your last Night Light code was doing!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 121 of 295

Mission 13 - Sounds Fun
Picking Up Good Vibrations?
Previously you've played MP3 files on CodeX using the basic audio functions. But there's
much more you can do with sound on this amazing device!

In this mission you'll dive deep into the soundlib module, and learn how to:

Play sounds and music "in the background" while other code is running.
Make sound effects for games and user feedback.
Control the pitch and loop your sounds.

Get GUI!
Along the way you'll also make a professional-quality "Graphical User Interface" for the CodeX. Known as a GUI (pronounced gooey),
the interactive user experience you'll design will be both familiar and exhilarating!

Learning to craft your own GUI components is a major milestone in your coding journey!

Objective 1 - Race Day

Race Day
The big cycling race starts in just a few hours. Unfortunately the race officials have announced that their
sound system is broken, so unless someone can provide an alternate plan they are going to cancel the
event.

Nooooo! You have to save the day!
Your CodeX has lots of sound capabilities, and you can plug the output into a guitar amp to get the volume
up.

Here's the list of requirements from the race officials, and a napkin-sketch they made when you met with them:

The controller must have an easy-to-use User Interface (UI).
Must loop the race theme music in the background, with PLAY/PAUSE control.
A way to trigger the "START" sound effect
Also need a "FINISH" sound.
Finally, a "WARNING" siren effect is needed.

Check the 'Trek!

First step is to frame-up the UI.

You'll expand your knowledge of the display bitmap functions as you create this!

CodeTrek:

 1 from codex import *
 2
 3 def screen_layout():

 4 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 5 display.draw_text("RACE CONTROLLER", x=35, y=8, color=BLACK, scale=2)

Define a function to draw the basic layout of your screen.

This will be all the "static" content, that doesn't change.

Use text and boxes to design your screen.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 122 of 295

 6
 7 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 8 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
 9 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
10 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
11
12 display.draw_rect(0, 80, 240, 40, GRAY)
13 display.draw_rect(0, 120, 240, 40, GRAY)
14 display.draw_rect(0, 160, 240, 40, GRAY)
15 display.draw_rect(0, 200, 240, 40, GRAY)
16
17 # Highlight the first "menu selection"
18 # TODO: Dark blue rectangle 240 wide by 40 high, at y=80

19
20 screen_layout()

21

Hints:

Use text and boxes to design your screen.

The following display functions are key.

Notice draw_text() doesn't do ANY scrolling, it simply puts the string exactly where you tell it!

Place text string at exact location
draw_text(text, x, y, color, scale)

Draw a box filled with color
fill_rect(x1, y1, width, height, color)

Draw a box outline
draw_rect(x1, y1, width, height, color)

The bitmap tool has more information, plus a link to the full docs.

Your "menu highlight" is a solid blue rectangle
See the bitmap toolbox help for more details about drawing on the screen.

display.fill_rect(0, 80, 240, 40, DARK_BLUE)

Goals:

Create a new file named Race_Control

Draw the basic screen layout for your RACE CONTROLLER.

See the Hints panel for details
on the draw_text(), draw_rect(), and fill_rect() functions.

AFTER your function,

.. and BEFORE drawing the screen_layout(),

Highlight a selected menu item.

Draw a filled blue rectangle across the screen.
y=80 will put it behind MUSIC, the first menu item.
Later you will add code to let the user move the selection up and down!

Check the Hints panel for more info on that if needed.

Don't forget to call your layout function!

Notice it is called AFTER the highlight rectangle is drawn.
That's so it draws on top of the highlight.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 123 of 295

The heading text must be "RACE CONTROLLER"

Menu options: "MUSIC", "START", "FINISH", "WARNING"

Place a DARK_BLUE highlight box behind the "MUSIC" menu item.

This will make it appear to be the selected item.

Tools Found: Bitmap

Solution:

 1 from codex import *
 2
 3 def screen_layout():
 4 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 5 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 6
 7 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 8 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
 9 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
10 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
11
12 display.draw_rect(0, 80, 240, 40, GRAY)
13 display.draw_rect(0, 120, 240, 40, GRAY)
14 display.draw_rect(0, 160, 240, 40, GRAY)
15 display.draw_rect(0, 200, 240, 40, GRAY)
16
17
18 display.fill_rect(0, 80, 240, 40, DARK_BLUE)
19 screen_layout()
20

Objective 2 - Scrolling Menu

Getting Interactive
Your UI layout looks great! Now it's time to hook-in the UP/DOWN scrolling buttons, so the user can select different options.

Right now the selection is stuck on MUSIC.
Sure, music is great and all. But They've gotta start the race sometime!

 Note
The code in the objective may NOT do what you expect! Read Carefully!

Menu List
Remember in the Personal Billboard mission you used a list to hold different items, and scrolled through the list with an index
variable, choice.

You can do the same thing here!

But this time your list will hold the y-coordinates where each rectangle needs to be drawn. (top left corner of rectangle)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 124 of 295

And menu_index points to the selection:

Example: Show START menu selected
menu_index = 1 # Point to START menu
y = menu_y[menu_index] # 120
display.fill_rect(0, y, 240, 40, DARK_BLUE)

CodeTrek:

 1 from codex import *
 2
 3 def screen_layout():
 4 """Draw static screen elements"""
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 """Update menu_index based on UI buttons"""

20 if buttons.was_pressed(BTN_U):
21 menu_index = max(menu_index - 1, 0) # Keep index >= 0
22 elif buttons.was_pressed(BTN_D):
23 menu_index = min(menu_index + 1, 3) # Keep index <= 3

24
25 # Global variables
26 menu_index = 0
27 menu_y = [80, 120, 160, 200]

28
29 # Main program loop
30 while True:
31
32 # Remember the previous selection.
33 prev_sel = menu_index
34
35 # Update menu_index based on buttons.
36 menu_buttons()
37
38 # If menu_index changed, update screen.
39 if menu_index != prev_sel:

Also notice I've added more comments in the code.

As your programs grow it's even more important to comment your ideas!

Define a function to check the U/D buttons.

Update a global variable menu_index if U or D was pressed.
Notice this does NOT "wrap" like you did in the Personal Billboard mission.
Instead it uses the built-in functions min() and max() to stop increasing
or decreasing past the limits.

So, the menu_index goes: 0→1→2→3 and 3→2→1→0

Y-position list of your 4 menu options.

These y-axis values match the gray boxes drawn in screen_layout().
For example, the MUSIC menu selection is at menu_y[0].
You'll use menu_index to track the current selection.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 125 of 295

40 # Update selected menu item.
41 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
42
43 # Draw static layout.
44 screen_layout()

45

Hints:

Read the Comments
Start at the top of the file and read all the comments in the CodeTrek.

Follow along with the code. Be the Computer!

Reading code takes time. You must go slowly to understand it.

Bug Out!
This Objective can only be completed by hitting a "runtime error" in your code.

Don't try to fix the bug in the code presented in the CodeTrek.

You'll take care of it in the next Objective!

Goals:

Define a function menu_buttons() that checks if BTN_U or BTN_D was pressed, and updates menu_index.

Run the code and press U or D on your CodeX.

You will encounter an error!

Tools Found: list, Variables, Built-In Functions, Comments

Solution:

 1 from codex import *
 2
 3
 4 def screen_layout():
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 if buttons.was_pressed(BTN_U):
20 menu_index = max(menu_index - 1, 0)
21 elif buttons.was_pressed(BTN_D):
22 menu_index = min(menu_index + 1, 3)
23
24 menu_index = 0

Main program loop

Continuously check the U/D buttons, and move the menu highlight as needed.

Read each comment in this code, and be sure you understand how it works!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 126 of 295

25 menu_y = [80, 120, 160, 200]
26
27 while True:
28 prev_sel = menu_index
29 menu_buttons()
30 if menu_index != prev_sel:
31 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
32 screen_layout()
33

Objective 3 - Going Global

Bug Bashing
So what's up with this error message?

Local variable referenced before assignment

Concept: Local vs Global variables

When you assign to a variable inside a function, Python assumes it's a local variable.

A local variable is "private" to the function.
It is a separate variable, even if it has the same name as another variable outside of the function.
And it only exists while the function is running, so it can't hold its value between calls to the function.

Variables defined outside of functions are globals.

A global variable exists for the entire life of your program.
Inside a function you can read its value, but you must use the global statement if you want to change it.

So, what happened?
Python saw that your menu_buttons() function was changing the value of menu_index. So it made menu_index a local variable.

Remember, a local variable doesn't exist until your function creates it by assigning to it.
But your function first tried to read the value of menu_index, so it could add or subtract 1.

...Before this local version even existed!
So that's what "Local variable referenced before assignment" means.

Use the global statement inside your function, so it can update the global menu_index.

CodeTrek:

 1 from codex import *
 2
 3 def screen_layout():
 4 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 5 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 6
 7 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 8 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
 9 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
10 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
11
12 display.draw_rect(0, 80, 240, 40, GRAY)
13 display.draw_rect(0, 120, 240, 40, GRAY)
14 display.draw_rect(0, 160, 240, 40, GRAY)
15 display.draw_rect(0, 200, 240, 40, GRAY)
16
17 def menu_buttons():
18 global menu_index

19 if buttons.was_pressed(BTN_U):
20 menu_index = max(menu_index - 1, 0)
21 elif buttons.was_pressed(BTN_D):

Simply add this global statement to inform Python that the function uses the global version of menu_index.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 127 of 295

22 menu_index = min(menu_index + 1, 3)
23
24 menu_index = 0
25 menu_y = [80, 120, 160, 200]
26
27 while True:
28 prev_sel = menu_index
29 menu_buttons()
30 if menu_index != prev_sel:
31 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
32 screen_layout()
33

Hint:

The menus still don't quite work as expected?

That's okay, the next Objective will make it better!

Goal:

Add the global statement to your menu_buttons() function.

Run the code: press U/D to test your menu!

Tools Found: Assignment, Functions, Locals and Globals, Variables

Solution:

 1 from codex import *
 2
 3
 4 def screen_layout():
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 global menu_index
20 if buttons.was_pressed(BTN_U):
21 menu_index = max(menu_index - 1, 0)
22 elif buttons.was_pressed(BTN_D):
23 menu_index = min(menu_index + 1, 3)
24
25 menu_index = 0
26 menu_y = [80, 120, 160, 200]
27
28 while True:
29 prev_sel = menu_index
30 menu_buttons()
31 if menu_index != prev_sel:
32 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
33 screen_layout()
34

Quiz 1 - Globals and Locals

Question 1: Which of the following is true?

 A variable which is assigned to inside of a function is considered local, unless it is explicitly named in a global statement..

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 128 of 295

1
2
3

 Any variable used inside of a function is considered local to that function, unless it is explicitly named in a global statement.

 A global variable is not visible inside a function, unless it is explicitly named in a global statement.

Question 2: The following function reports an error on Line 2.

def add_counter(amount, limit):
 if counter < limit:
 counter = counter + amount

What is the expected error message?

 Local variable referenced before assignment

 Global variable cannot be used in comparison.

 Undefined variable: counter

Objective 4 - Covering Your Tracks

Covering Your Tracks
Oh dear, your program has yet another problem. Your menu selection is leaving big footprints
behind!

Sometimes coding can feel like you're constantly moving from one bug to the next.
Just remember, you are making progress every step of the way!
Enjoy the journey, my friend.

You're already keeping track of the previous menu index. You just need to erase that area when
changing to a new selection.

CodeTrek:

 1 from codex import *
 2
 3
 4 def screen_layout():
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 global menu_index
20 if buttons.was_pressed(BTN_U):
21 menu_index = max(menu_index - 1, 0)
22 elif buttons.was_pressed(BTN_D):
23 menu_index = min(menu_index + 1, 3)
24
25 menu_index = 0
26 menu_y = [80, 120, 160, 200]
27
28 while True:
29 prev_sel = menu_index
30 menu_buttons()
31
32 # If menu_index changed, update screen.
33 if menu_index != prev_sel:
34 # Erase previous menu item
35 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 129 of 295

36
37 # Update selected menu item.
38 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)

39
40 # Draw static layout.
41 screen_layout()
42

Goal:

Add a line of code to erase the previous selection before moving to the next one.

Press U/D to test your menu!

Solution:

 1 from codex import *
 2
 3
 4 def screen_layout():
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 global menu_index
20 if buttons.was_pressed(BTN_U):
21 menu_index = max(menu_index - 1, 0)
22 elif buttons.was_pressed(BTN_D):
23 menu_index = min(menu_index + 1, 3)
24
25 menu_index = 0
26 menu_y = [80, 120, 160, 200]
27
28 while True:
29 prev_sel = menu_index
30 menu_buttons()
31 if menu_index != prev_sel:
32 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
33 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
34 screen_layout()
35

Objective 5 - Action

Add Some Action!
Now that your menu-scrolling is on point, it's time to add a way for the user to trigger the selected
action.

For now just display a message when Button A is pressed.

Status Display

If you look closely at the napkin sketch of the UI in Objective 1, there was a "status area" just above the menu.

You should put some text there for each menu action.

Erase the previous selected item by filling it with a BLACK background.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 130 of 295

Soon you will add the sounds!

CodeTrek:

 1 from codex import *
 2
 3
 4 def screen_layout():
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 global menu_index
20 if buttons.was_pressed(BTN_U):
21 menu_index = max(menu_index - 1, 0)
22 elif buttons.was_pressed(BTN_D):
23 menu_index = min(menu_index + 1, 3)
24
25 def show_status(msg):
26 display.fill_rect(0, 30, 240, 50, BLACK)
27 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)

28
29 def action_buttons():
30 if buttons.was_pressed(BTN_A):
31 if menu_index == 0:
32 show_status("Start music...")
33 elif menu_index == 1:
34 show_status("Start race...")
35 elif menu_index == 2:
36 show_status("Finish race...")
37 elif menu_index == 3:
38 show_status("Warning sound...")

39
40 menu_index = 0
41 menu_y = [80, 120, 160, 200]
42
43 while True:
44 prev_sel = menu_index
45 menu_buttons()
46 if menu_index != prev_sel:
47 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
48 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
49 screen_layout()
50
51 action_buttons()

The show_status(message) function.

Erase the background, then draw text!

The action_buttons() function.

When A is pressed, call show_status()
The menu_index points to the items 0:MUSIC, 1:START, 2:FINISH, 3:WARNING.

Don't forget to call the action_buttons() function in your loop.

That's how you detect when button A was pressed!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 131 of 295

52

Goals:

Define a new function def show_status(message) that displays a message in the status area.

Be sure to erase the background before drawing the message text.

Define a new function def action_buttons() that checks for BTN_A and displays a status message based on the currently
selected menu_index.

Test your menu actions by scrolling U/D and pressing A for each item!

Tools Found: Loops

Solution:

 1 from codex import *
 2
 3
 4 def screen_layout():
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 global menu_index
20 if buttons.was_pressed(BTN_U):
21 menu_index = max(menu_index - 1, 0)
22 elif buttons.was_pressed(BTN_D):
23 menu_index = min(menu_index + 1, 3)
24
25 def show_status(msg):
26 display.fill_rect(0, 30, 240, 50, BLACK)
27 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
28
29 def action_buttons():
30 if buttons.was_pressed(BTN_A):
31 if menu_index == 0:
32 show_status("Start music...")
33 elif menu_index == 1:
34 show_status("Start race...")
35 elif menu_index == 2:
36 show_status("Finish race...")
37 elif menu_index == 3:
38 show_status("Warning sound...")
39
40 menu_index = 0
41 menu_y = [80, 120, 160, 200]
42
43 while True:
44 prev_sel = menu_index
45 menu_buttons()
46 if menu_index != prev_sel:
47 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
48 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
49 screen_layout()
50
51 action_buttons()
52

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 132 of 295

Objective 6 - Initialization

Make a Good First Impression
Your menu system is looking good, but it could be more user-friendly. A race official should be able to use this without any
instructions!

Here are a couple of small problems you need to fix:

The user has to press U or D before anything is displayed.
There are no instructions about how to use this thing!

Check the 'Trek!

You're gonna need a variable to detect the first time the code runs through your main loop. It's pretty common to see
global variables which are set during "program initialization", such as a boolean like init = True.

CodeTrek:

 1 from codex import *
 2
 3
 4 def screen_layout():
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 global menu_index
20 if buttons.was_pressed(BTN_U):
21 menu_index = max(menu_index - 1, 0)
22 elif buttons.was_pressed(BTN_D):
23 menu_index = min(menu_index + 1, 3)
24
25 def show_status(msg):
26 display.fill_rect(0, 30, 240, 50, BLACK)
27 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
28
29 def action_buttons():
30 if buttons.was_pressed(BTN_A):
31 if menu_index == 0:
32 show_status("Start music...")
33 elif menu_index == 1:
34 show_status("Start race...")
35 elif menu_index == 2:
36 show_status("Finish race...")
37 elif menu_index == 3:
38 show_status("Warning sound...")
39
40 menu_index = 0
41 menu_y = [80, 120, 160, 200]
42 # TODO: initialize the 'init' variable

Create the init variable

You must add a line of code here!

What should the value of init be at the start, True or False?
Think through what happens the first time through the loop below...

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 133 of 295

43
44 show_status("Scroll=U/D Select=A")

45
46 while True:
47 prev_sel = menu_index
48 menu_buttons()
49 if menu_index != prev_sel or init:
50 init = False

51 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
52 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
53 screen_layout()
54
55 action_buttons()
56

Goals:

Call show_status("...") before your main program loop, to display instructions for operating the Race Controller.

Draw the whole screen plus menu selection when the program first runs.

No more need to press U or D to show the initial screen!

Tools Found: Variables, Locals and Globals, bool, Logical Operators

Solution:

 1 from codex import *
 2
 3
 4 def screen_layout():
 5 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 6 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 7
 8 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 9 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
10 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
11 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
12
13 display.draw_rect(0, 80, 240, 40, GRAY)
14 display.draw_rect(0, 120, 240, 40, GRAY)
15 display.draw_rect(0, 160, 240, 40, GRAY)
16 display.draw_rect(0, 200, 240, 40, GRAY)
17
18 def menu_buttons():
19 global menu_index
20 if buttons.was_pressed(BTN_U):
21 menu_index = max(menu_index - 1, 0)
22 elif buttons.was_pressed(BTN_D):
23 menu_index = min(menu_index + 1, 3)
24
25 def show_status(msg):
26 display.fill_rect(0, 30, 240, 50, BLACK)
27 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
28
29 def action_buttons():

Display the instructions.

This is before your main loop, so it only runs once when the program first starts.

Draw the whole screen on the initial (init) run of the program.

This simulates that first U/D button press you've been doing!
See the logical operator or in the if condition?
Be sure to set init = False, or this will run constantly and make the menu "flicker".

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 134 of 295

30 if buttons.was_pressed(BTN_A):
31 if menu_index == 0:
32 show_status("Start music...")
33 elif menu_index == 1:
34 show_status("Start race...")
35 elif menu_index == 2:
36 show_status("Finish race...")
37 elif menu_index == 3:
38 show_status("Warning sound...")
39
40 menu_index = 0
41 menu_y = [80, 120, 160, 200]
42 init = True
43
44 show_status("Scroll=U/D Select=A")
45
46 while True:
47 prev_sel = menu_index
48 menu_buttons()
49 if menu_index != prev_sel or init:
50 init = False
51 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
52 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
53 screen_layout()
54
55 action_buttons()
56

Objective 7 - Start Race

START!!
Now it's time to put some ACTION in your menu actions!

To start the race you're going to want a punchy, distinctive sound.

Something like Reveille on Bugle - "Ta Ta-Ta-Taaaaa!"
You've played MP3 files on the CodeX, but to craft your own sound effects like this you will need to
create tones and change the pitch (frequency) directly with code!

Concept: The soundlib Module

Your CodeX has an awesome Python module for creating music and sound effects. The soundmaker object from the soundlib
module has functions to create different types of tones, as well as playing recorded samples and MP3s.

Example: Play a tone for 1.5 seconds

from soundlib import *
from time import *

tone = soundmaker.get_tone('trumpet')
tone.set_pitch(880)
tone.play()
sleep(1.5)
tone.stop()

Ready to make some noise ?

CodeTrek:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep

Oh yeah, don't forget your imports!

Gotta have the soundlib module so you can use soundmaker.
And your sound effects use sleep() for timing :-)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 135 of 295

 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
13
14 display.draw_rect(0, 80, 240, 40, GRAY)
15 display.draw_rect(0, 120, 240, 40, GRAY)
16 display.draw_rect(0, 160, 240, 40, GRAY)
17 display.draw_rect(0, 200, 240, 40, GRAY)
18
19 def menu_buttons():
20 global menu_index
21 if buttons.was_pressed(BTN_U):
22 menu_index = max(menu_index - 1, 0)
23 elif buttons.was_pressed(BTN_D):
24 menu_index = min(menu_index + 1, 3)
25
26 def show_status(msg):
27 display.fill_rect(0, 30, 240, 50, BLACK)
28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
29
30 def start_race():
31 show_status("Start race...")
32 trumpet.set_pitch(440)
33 trumpet.play()

34 sleep(0.1)
35 trumpet.stop()
36 sleep(0.1)
37 trumpet.set_pitch(880)
38 trumpet.play()
39 sleep(0.2)
40 trumpet.stop()
41
42 def action_buttons():
43 if buttons.was_pressed(BTN_A):
44 if menu_index == 0:
45 show_status("Start music...")
46 elif menu_index == 1:
47 start_race()

48 elif menu_index == 2:
49 show_status("Finish race...")
50 elif menu_index == 3:
51 show_status("Warning sound...")
52
53 menu_index = 0
54 menu_y = [80, 120, 160, 200]
55 init = True
56 show_status("Scroll=U/D Select=A")
57
58 trumpet = soundmaker.get_tone('trumpet')

Define the start_race() function.

Keep it simple for this first test.
You'll be able to customize the sound to your personal style later!

The START action will happen in a new function.

Replace the status message with a call to the start_race() function!

Get a tone from the soundmaker.

Each call to get_tone() gets a new sound that can be played independently.
You can have up to 16 tones playing at the same time!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 136 of 295

59
60 while True:
61 prev_sel = menu_index
62 menu_buttons()
63 if menu_index != prev_sel or init:
64 init = False
65 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
66 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
67 screen_layout()
68
69 action_buttons()
70

Goals:

Define a start_race() function.

Call the start_race() function from inside action_buttons().

Don't forget to import the modules for sound and timing.

Get a tone from soundmaker

Tools Found: Functions, import

Solution:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
13
14 display.draw_rect(0, 80, 240, 40, GRAY)
15 display.draw_rect(0, 120, 240, 40, GRAY)
16 display.draw_rect(0, 160, 240, 40, GRAY)
17 display.draw_rect(0, 200, 240, 40, GRAY)
18
19 def menu_buttons():
20 global menu_index
21 if buttons.was_pressed(BTN_U):
22 menu_index = max(menu_index - 1, 0)
23 elif buttons.was_pressed(BTN_D):
24 menu_index = min(menu_index + 1, 3)
25
26 def show_status(msg):
27 display.fill_rect(0, 30, 240, 50, BLACK)
28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
29
30 def start_race():
31 show_status("Start race...")
32 trumpet.set_pitch(440)
33 trumpet.play()
34 sleep(0.1)
35 trumpet.stop()
36 sleep(0.1)
37 trumpet.set_pitch(880)
38 trumpet.play()
39 sleep(0.2)
40 trumpet.stop()
41

But for the START sound you only need one tone.
Get it here as a global variable, since we only need to call get_tone() once.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 137 of 295

42 def action_buttons():
43 if buttons.was_pressed(BTN_A):
44 if menu_index == 0:
45 show_status("Start music...")
46 elif menu_index == 1:
47 start_race()
48 elif menu_index == 2:
49 show_status("Finish race...")
50 elif menu_index == 3:
51 show_status("Warning sound...")
52
53 menu_index = 0
54 menu_y = [80, 120, 160, 200]
55 init = True
56 show_status("Scroll=U/D Select=A")
57
58 trumpet = soundmaker.get_tone('trumpet')
59
60 while True:
61 prev_sel = menu_index
62 menu_buttons()
63 if menu_index != prev_sel or init:
64 init = False
65 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
66 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
67 screen_layout()
68
69 action_buttons()
70

Objective 8 - Fanfare

More Fanfare!
Your START sound could use a bit more "excitement".

Repeating the first tone several times would be a good lead-in for starting the race.
And you know how to do that without copying and pasting that code a bunch of times, right?

You need to use a loop !

But this time you can make the code even simpler...

Concept: for loop

The for loop is made for looping across a range of numbers, or iterating over other kinds of sequences like lists.

Use the built-in range function to specify the sequence of numbers you need.

The for loop saves you the trouble of initializing and updating the loop variable
It automatically takes the next value from the sequence on each iteration through the loop.

Get creative!

Feel free to experiment with looping notes until it sounds good to you.

CodeTrek:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 138 of 295

12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
13
14 display.draw_rect(0, 80, 240, 40, GRAY)
15 display.draw_rect(0, 120, 240, 40, GRAY)
16 display.draw_rect(0, 160, 240, 40, GRAY)
17 display.draw_rect(0, 200, 240, 40, GRAY)
18
19 def menu_buttons():
20 global menu_index
21 if buttons.was_pressed(BTN_U):
22 menu_index = max(menu_index - 1, 0)
23 elif buttons.was_pressed(BTN_D):
24 menu_index = min(menu_index + 1, 3)
25
26 def show_status(msg):
27 display.fill_rect(0, 30, 240, 50, BLACK)
28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
29
30 def start_race():
31 show_status("Start race...")
32 for i in range(4):
33 trumpet.set_pitch(440)
34 trumpet.play()
35 sleep(0.1)
36 trumpet.stop()
37 sleep(0.1)
38 trumpet.set_pitch(880)

39 trumpet.play()
40 sleep(0.2)
41 trumpet.stop()
42
43 def action_buttons():
44 if buttons.was_pressed(BTN_A):
45 if menu_index == 0:
46 show_status("Start music...")
47 elif menu_index == 1:
48 start_race()
49 elif menu_index == 2:
50 show_status("Finish race...")
51 elif menu_index == 3:
52 show_status("Warning sound...")
53
54 menu_index = 0
55 menu_y = [80, 120, 160, 200]
56 init = True
57 show_status("Scroll=U/D Select=A")
58
59 trumpet = soundmaker.get_tone('trumpet')
60
61 while True:
62 prev_sel = menu_index
63 menu_buttons()
64 if menu_index != prev_sel or init:
65 init = False
66 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
67 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
68 screen_layout()
69
70 action_buttons()
71

Goal:

Add a for loop to your start_race() function.

Add a for loop to your jam!

Try it as shown first, then feel free to get creative...

Notice, you can just select the block of code you already had, and indent
it beneath the for i in range(4): to make it loop 4 times!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 139 of 295

And play some sounds inside the loop!

Tools Found: Loops, Iterable, list, Ranges, Variables, Indentation

Solution:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
13
14 display.draw_rect(0, 80, 240, 40, GRAY)
15 display.draw_rect(0, 120, 240, 40, GRAY)
16 display.draw_rect(0, 160, 240, 40, GRAY)
17 display.draw_rect(0, 200, 240, 40, GRAY)
18
19 def menu_buttons():
20 global menu_index
21 if buttons.was_pressed(BTN_U):
22 menu_index = max(menu_index - 1, 0)
23 elif buttons.was_pressed(BTN_D):
24 menu_index = min(menu_index + 1, 3)
25
26 def show_status(msg):
27 display.fill_rect(0, 30, 240, 50, BLACK)
28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
29
30 def start_race():
31 show_status("Start race...")
32 for i in range(4):
33 trumpet.set_pitch(440)
34 trumpet.play()
35 sleep(0.1)
36 trumpet.stop()
37 sleep(0.1)
38 trumpet.set_pitch(880)
39 trumpet.play()
40 sleep(0.2)
41 trumpet.stop()
42
43 def action_buttons():
44 if buttons.was_pressed(BTN_A):
45 if menu_index == 0:
46 show_status("Start music...")
47 elif menu_index == 1:
48 start_race()
49 elif menu_index == 2:
50 show_status("Finish race...")
51 elif menu_index == 3:
52 show_status("Warning sound...")
53
54 menu_index = 0
55 menu_y = [80, 120, 160, 200]
56 init = True
57 show_status("Scroll=U/D Select=A")
58
59 trumpet = soundmaker.get_tone('trumpet')
60
61 while True:
62 prev_sel = menu_index
63 menu_buttons()
64 if menu_index != prev_sel or init:
65 init = False
66 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
67 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 140 of 295

68 screen_layout()
69
70 action_buttons()
71

Quiz 2 - For Loops

Question 1: What is displayed by the following code?

for i in range(4):
 display.print(i, end=',')

 0,1,2,3

 1,2,3,4

 0,1,2,3,4

Question 2: What is displayed by the following code?

for i in range(1, 5):
 display.print(i, end=',')

 1,2,3,4

 1,2,3,4,5

 0,1,2,3,4,5

Objective 9 - Music

Make Some Music!
Moving on to the MUSIC menu option.

Change your code to start and stop the music when the MUSIC menu is selected.

Playing an MP3 in the Background

With the soundlib module, you have a new way to play MP3 files:

Example:

Get an MP3 song object. Returns immediately (non-blocking)
song = soundmaker.get_mp3("sounds/roll")

Concept: Blocking vs. Non-Blocking Functions

The advantage of using soundmaker for MP3s is that it doesn't make your code wait for the sound to finish playing.

Functions that block your code from continuing until they finish are called blocking functions.
The soundmaker functions are non-blocking. Your code can start() and stop() a sound, and the sound keeps playing
while your code runs.

Toggling On/Off

When the user selects MUSIC on the menu, it should either turn the music ON or OFF.

Depends on whether the music already is_playing, right?
So your code needs a variable for the current state is_playing, True or False.
And when they press the MUSIC button, the state should flip:

True → False ...or False → True.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 141 of 295

That's exactly what the not logical operator does. You will often use this operator when you need to toggle a bool value!

CodeTrek:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
13
14 display.draw_rect(0, 80, 240, 40, GRAY)
15 display.draw_rect(0, 120, 240, 40, GRAY)
16 display.draw_rect(0, 160, 240, 40, GRAY)
17 display.draw_rect(0, 200, 240, 40, GRAY)
18
19 def menu_buttons():
20 global menu_index
21 if buttons.was_pressed(BTN_U):
22 menu_index = max(menu_index - 1, 0)
23 elif buttons.was_pressed(BTN_D):
24 menu_index = min(menu_index + 1, 3)
25
26 def show_status(msg):
27 display.fill_rect(0, 30, 240, 50, BLACK)
28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
29
30 def start_race():
31 show_status("Start race...")
32 for i in range(4):
33 trumpet.set_pitch(440)
34 trumpet.play()
35 sleep(0.1)
36 trumpet.stop()
37 sleep(0.1)
38 trumpet.set_pitch(880)
39 trumpet.play()
40 sleep(0.2)
41 trumpet.stop()
42
43 def toggle_music():
44 #TODO: Add a statement so Python knows is_playing is a global variable.
45 is_playing = not is_playing
46 if is_playing:
47 show_status("Started music...")
48 music_track.play(loop=True)
49 else:
50 show_status("Stopped music!")
51 music_track.stop()

52
53 def action_buttons():
54 if buttons.was_pressed(BTN_A):
55 if menu_index == 0:
56 toggle_music()

Define the toggle_music() function.

Check out the cool not action here :-)
Oh, and mind the #TODO comment!

You might get a familiar error if you don't.
is_playing should be global, eh?

Call your new toggle_music() function to turn the tunes ON/OFF.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 142 of 295

57 elif menu_index == 1:
58 start_race()
59 elif menu_index == 2:
60 show_status("Finish race...")
61 elif menu_index == 3:
62 show_status("Warning sound...")
63
64 menu_index = 0
65 menu_y = [80, 120, 160, 200]
66 init = True
67 show_status("Scroll=U/D Select=A")
68
69 trumpet = soundmaker.get_tone('trumpet')
70 music_track = soundmaker.get_mp3('sounds/funk', play=False)
71 is_playing = False

72
73 while True:
74 prev_sel = menu_index
75 menu_buttons()
76 if menu_index != prev_sel or init:
77 init = False
78 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
79 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
80 screen_layout()
81
82 action_buttons()
83

Hints:

Getting an error?

Check the CodeTrek

You'll need a global declaration in your toggle_music() function.

Music Starts Automatically?

Does your MP3 start playing right away?

Look closely at the get_mp3() arguments below. The play=False is the secret to loading the song in the stopped mode.
music_track = soundmaker.get_mp3('sounds/funk', play=False)

Goals:

Get an MP3 file to play using the soundmaker object.

Define a new function def toggle_music() that toggles the music ON and OFF.

It should use not to flip the state of a global is_playing variable True / False

Call your new toggle_music() function from action_buttons().

When the user selects MUSIC and presses A the music should turn ON or OFF.

Tools Found: Variables, Logical Operators, bool, Locals and Globals

Solution:

 1 from codex import *
 2 from soundlib import *

Add some global music data.

First you need a song to play. I've chosen "funk.mp3" as an inspiring selection.
Next, create a bool variable to hold the state is_playing.

This is your Race Controller's memory of whether it's currently playing MUSIC or not!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 143 of 295

 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
13
14 display.draw_rect(0, 80, 240, 40, GRAY)
15 display.draw_rect(0, 120, 240, 40, GRAY)
16 display.draw_rect(0, 160, 240, 40, GRAY)
17 display.draw_rect(0, 200, 240, 40, GRAY)
18
19 def menu_buttons():
20 global menu_index
21 if buttons.was_pressed(BTN_U):
22 menu_index = max(menu_index - 1, 0)
23 elif buttons.was_pressed(BTN_D):
24 menu_index = min(menu_index + 1, 3)
25
26 def show_status(msg):
27 display.fill_rect(0, 30, 240, 50, BLACK)
28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
29
30 def start_race():
31 show_status("Start race...")
32 for i in range(4):
33 trumpet.set_pitch(440)
34 trumpet.play()
35 sleep(0.1)
36 trumpet.stop()
37 sleep(0.1)
38 trumpet.set_pitch(880)
39 trumpet.play()
40 sleep(0.2)
41 trumpet.stop()
42
43 def toggle_music():
44 global is_playing
45 is_playing = not is_playing
46 if is_playing:
47 show_status("Started music...")
48 music_track.play(loop=True)
49 else:
50 show_status("Stopped music!")
51 music_track.stop()
52
53 def action_buttons():
54 if buttons.was_pressed(BTN_A):
55 if menu_index == 0:
56 toggle_music()
57 elif menu_index == 1:
58 start_race()
59 elif menu_index == 2:
60 show_status("Finish race...")
61 elif menu_index == 3:
62 show_status("Warning sound...")
63
64 menu_index = 0
65 menu_y = [80, 120, 160, 200]
66 init = True
67 show_status("Scroll=U/D Select=A")
68
69 trumpet = soundmaker.get_tone('trumpet')
70 music_track = soundmaker.get_mp3('sounds/funk', play=False)
71 is_playing = False
72
73 while True:
74 prev_sel = menu_index
75 menu_buttons()
76 if menu_index != prev_sel or init:
77 init = False

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 144 of 295

78 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
79 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
80 screen_layout()
81
82 action_buttons()
83

Quiz 3 - Blocking and Toggling

Question 1: What is a blocking function?

 A function that blocks program execution and does not return until it has completed its goal.

 A function that creates square 2D shapes or 3D cubes.

 A function that returns immediately, even if that would block it from completing its goal.

 A function composed of blocks.

Question 2: sleep(5) will delay the program for 5 seconds.

Is it a "blocking function"?

 Yes

 No

Question 3: What is the final value of toggle after this code runs?

toggle = False

toggle = not toggle
toggle = not toggle
toggle = not toggle

 True

 False

 3

Objective 10 - Finish Race

The Sound of Victory
It's time for you to craft another sound.

This one will be played when a racer crosses the finish line.
It should be exciting and inspiring - a celebration of the effort!

Your START sound used a for loop to repeat a tone. Now rather than repeating the same tone,
try changing the frequency inside your loop using the set_pitch() function.

The CodeTrek will lead you to a pretty cool sound. But I bet you can do better. Make it your own!

CodeTrek:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 145 of 295

 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
 11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
 12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
 13
 14 display.draw_rect(0, 80, 240, 40, GRAY)
 15 display.draw_rect(0, 120, 240, 40, GRAY)
 16 display.draw_rect(0, 160, 240, 40, GRAY)
 17 display.draw_rect(0, 200, 240, 40, GRAY)
 18
 19 def menu_buttons():
 20 global menu_index
 21 if buttons.was_pressed(BTN_U):
 22 menu_index = max(menu_index - 1, 0)
 23 elif buttons.was_pressed(BTN_D):
 24 menu_index = min(menu_index + 1, 3)
 25
 26 def show_status(msg):
 27 display.fill_rect(0, 30, 240, 50, BLACK)
 28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
 29
 30 def start_race():
 31 show_status("Start race...")
 32 for i in range(4):
 33 trumpet.set_pitch(440)
 34 trumpet.play()
 35 sleep(0.1)
 36 trumpet.stop()
 37 sleep(0.1)
 38 trumpet.set_pitch(880)
 39 trumpet.play()
 40 sleep(0.2)
 41 trumpet.stop()
 42
 43 def toggle_music():
 44 global is_playing
 45 is_playing = not is_playing
 46 if is_playing:
 47 show_status("Started music...")
 48 music_track.play(loop=True)
 49 else:
 50 show_status("Stopped music!")
 51 music_track.stop()
 52
 53 def finish_race():
 54 show_status("Finish race...")
 55 trumpet.play()
 56
 57 for freq1 in range(500, 1500, 100):
 58 for freq2 in range(freq1, freq1+1000, 100):
 59 trumpet.set_pitch(freq2)
 60 sleep(0.023)

 61
 62 for repeats in range(10):
 63 trumpet.play()
 64 sleep(0.1)
 65 trumpet.stop()
 66 sleep(0.05)
 67
 68 trumpet.stop()

Sweep the sound low to high, from bass to treble!

The set_pitch(freq) function changes the frequency of a tone.

Here I am using two for loops.

The second loop is nested inside the first one.
Every time through the outer loop, the inner loop completes ALL its cycles.

Both of these loops step the frequency by 100 Hz each time
around the loop, using range(start, stop, step) .

See the range docs for more details on that!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 146 of 295

 69
 70 def action_buttons():
 71 if buttons.was_pressed(BTN_A):
 72 if menu_index == 0:
 73 toggle_music()
 74 elif menu_index == 1:
 75 start_race()
 76 elif menu_index == 2:
 77 finish_race()
 78 elif menu_index == 3:
 79 show_status("Warning sound...")
 80
 81 menu_index = 0
 82 menu_y = [80, 120, 160, 200]
 83 init = True
 84 show_status("Scroll=U/D Select=A")
 85
 86 trumpet = soundmaker.get_tone('trumpet')
 87 music_track = soundmaker.get_mp3('sounds/funk', play=False)
 88 is_playing = False
 89
 90 while True:
 91 prev_sel = menu_index
 92 menu_buttons()
 93 if menu_index != prev_sel or init:
 94 init = False
 95 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
 96 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
 97 screen_layout()
 98
 99 action_buttons()
100

Goals:

Define a new function def finish_race() that plays your FINISH sound.

Call your finish_race() function when the user activates the FINISH menu item.

Tools Found: Loops, Ranges

Solution:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
 11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
 12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
 13
 14 display.draw_rect(0, 80, 240, 40, GRAY)
 15 display.draw_rect(0, 120, 240, 40, GRAY)
 16 display.draw_rect(0, 160, 240, 40, GRAY)
 17 display.draw_rect(0, 200, 240, 40, GRAY)
 18
 19 def menu_buttons():
 20 global menu_index
 21 if buttons.was_pressed(BTN_U):
 22 menu_index = max(menu_index - 1, 0)
 23 elif buttons.was_pressed(BTN_D):
 24 menu_index = min(menu_index + 1, 3)
 25
 26 def show_status(msg):
 27 display.fill_rect(0, 30, 240, 50, BLACK)
 28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 147 of 295

 29
 30 def start_race():
 31 show_status("Start race...")
 32 for i in range(4):
 33 trumpet.set_pitch(440)
 34 trumpet.play()
 35 sleep(0.1)
 36 trumpet.stop()
 37 sleep(0.1)
 38 trumpet.set_pitch(880)
 39 trumpet.play()
 40 sleep(0.2)
 41 trumpet.stop()
 42
 43 def toggle_music():
 44 global is_playing
 45 is_playing = not is_playing
 46 if is_playing:
 47 show_status("Started music...")
 48 music_track.play(loop=True)
 49 else:
 50 show_status("Stopped music!")
 51 music_track.stop()
 52
 53 def finish_race():
 54 show_status("Finish race...")
 55 trumpet.play()
 56
 57 for freq1 in range(500, 1500, 100):
 58 for freq2 in range(freq1, freq1+1000, 100):
 59 trumpet.set_pitch(freq2)
 60 sleep(0.023)
 61
 62 for repeats in range(10):
 63 trumpet.play()
 64 sleep(0.1)
 65 trumpet.stop()
 66 sleep(0.05)
 67
 68 trumpet.stop()
 69
 70 def action_buttons():
 71 if buttons.was_pressed(BTN_A):
 72 if menu_index == 0:
 73 toggle_music()
 74 elif menu_index == 1:
 75 start_race()
 76 elif menu_index == 2:
 77 finish_race()
 78 elif menu_index == 3:
 79 show_status("Warning sound...")
 80
 81 menu_index = 0
 82 menu_y = [80, 120, 160, 200]
 83 init = True
 84 show_status("Scroll=U/D Select=A")
 85
 86 trumpet = soundmaker.get_tone('trumpet')
 87 music_track = soundmaker.get_mp3('sounds/funk', play=False)
 88 is_playing = False
 89
 90 while True:
 91 prev_sel = menu_index
 92 menu_buttons()
 93 if menu_index != prev_sel or init:
 94 init = False
 95 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
 96 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
 97 screen_layout()
 98
 99 action_buttons()
100

Objective 11 - Warning Siren

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 148 of 295

Warning Alert
If there's a problem on the race course, or some danger to warn the riders about, how will the race officials get their
attention?

Your mission is to create a sound effect that makes people take notice!

New soundlib Feature: glide()

The CodeTrek will introduce you to another feature of the soundmaker Tone object.

The glide(new_pitch, duration) function is an easy way to ramp the pitch from the current setting to a new setting over a
specified amount of time.
You could achieve the same thing with a loop

...but it's nice to let the library do the work for you!
Plus, it's non-blocking. So if you wanted to, you could code some flashing lights and stuff while the sound glides on!

CodeTrek:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
 11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
 12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
 13
 14 display.draw_rect(0, 80, 240, 40, GRAY)
 15 display.draw_rect(0, 120, 240, 40, GRAY)
 16 display.draw_rect(0, 160, 240, 40, GRAY)
 17 display.draw_rect(0, 200, 240, 40, GRAY)
 18
 19 def menu_buttons():
 20 global menu_index
 21 if buttons.was_pressed(BTN_U):
 22 menu_index = max(menu_index - 1, 0)
 23 elif buttons.was_pressed(BTN_D):
 24 menu_index = min(menu_index + 1, 3)
 25
 26 def show_status(msg):
 27 display.fill_rect(0, 30, 240, 50, BLACK)
 28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
 29
 30 def start_race():
 31 show_status("Start race...")
 32 for i in range(4):
 33 trumpet.set_pitch(440)
 34 trumpet.play()
 35 sleep(0.1)
 36 trumpet.stop()
 37 sleep(0.1)
 38 trumpet.set_pitch(880)
 39 trumpet.play()
 40 sleep(0.2)
 41 trumpet.stop()
 42
 43 def toggle_music():
 44 global is_playing
 45 is_playing = not is_playing
 46 if is_playing:
 47 show_status("Started music...")
 48 music_track.play(loop=True)
 49 else:
 50 show_status("Stopped music!")
 51 music_track.stop()
 52
 53 def finish_race():
 54 show_status("Finish race...")

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 149 of 295

 55 trumpet.play()
 56
 57 for freq1 in range(500, 1500, 100):
 58 for freq2 in range(freq1, freq1+1000, 100):
 59 trumpet.set_pitch(freq2)
 60 sleep(0.023)
 61
 62 for repeats in range(10):
 63 trumpet.play()
 64 sleep(0.1)
 65 trumpet.stop()
 66 sleep(0.05)
 67
 68 trumpet.stop()
 69
 70 def warning():
 71 show_status("Warning sound...")
 72 siren.set_pitch(440)
 73 siren.play()
 74 siren.glide(880, 1.5)

 75 sleep(1.5)
 76 siren.glide(440, 1.5)
 77 sleep(1.5)
 78 siren.stop()
 79
 80 def action_buttons():
 81 if buttons.was_pressed(BTN_A):
 82 if menu_index == 0:
 83 toggle_music()
 84 elif menu_index == 1:
 85 start_race()
 86 elif menu_index == 2:
 87 finish_race()
 88 elif menu_index == 3:
 89 warning()

 90
 91 menu_index = 0
 92 menu_y = [80, 120, 160, 200]
 93 init = True
 94 show_status("Scroll=U/D Select=A")
 95
 96 trumpet = soundmaker.get_tone('trumpet')
 97 music_track = soundmaker.get_mp3('sounds/funk', play=False)
 98 is_playing = False
 99 siren = soundmaker.get_tone('violin')

100
101 while True:
102 prev_sel = menu_index
103 menu_buttons()

A siren sound.

The glide function takes 2 arguments: glide(new_pitch, duration)

new_pitch is the target frequency the tone will ramp to.
duration is how many seconds it will take to get there.

Here I'm just ramping it up for 1.5 seconds, then back down for 1.5 seconds.

Notice I had to sleep() while it's "gliding".
The glide() function is non-blocking, so it returns immediately!
You know, in case you want to also kick-off a few other tones gliding and whatnot...

Call your new warning() function when the user activates the WARNING menu item.

Define a new global sound for your WARNING siren.

You can experiment with different sounds from soundlib, but I like the "violin" for this.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 150 of 295

104 if menu_index != prev_sel or init:
105 init = False
106 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
107 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
108 screen_layout()
109
110 action_buttons()
111

Goals:

Define a new function def warning() that makes an "alarming" sound.

Call your new warning() function when the user activates the WARNING menu item.

Tools Found: soundlib, Loops, import, Keyword and Positional Arguments

Solution:

 1 from codex import *
 2 from soundlib import *
 3 from time import sleep
 4
 5 def screen_layout():
 6 display.fill_rect(0, 0, 240, 30, LIGHT_GRAY)
 7 display.draw_text("RACE CONTROLLER", 35, 8, color=BLACK, scale=2)
 8
 9 display.draw_text("MUSIC", x=20, y=90, color=WHITE, scale=3)
 10 display.draw_text("START", x=20, y=130, color=WHITE, scale=3)
 11 display.draw_text("FINISH", x=20, y=170, color=WHITE, scale=3)
 12 display.draw_text("WARNING", x=20, y=210, color=WHITE, scale=3)
 13
 14 display.draw_rect(0, 80, 240, 40, GRAY)
 15 display.draw_rect(0, 120, 240, 40, GRAY)
 16 display.draw_rect(0, 160, 240, 40, GRAY)
 17 display.draw_rect(0, 200, 240, 40, GRAY)
 18
 19 def menu_buttons():
 20 global menu_index
 21 if buttons.was_pressed(BTN_U):
 22 menu_index = max(menu_index - 1, 0)
 23 elif buttons.was_pressed(BTN_D):
 24 menu_index = min(menu_index + 1, 3)
 25
 26 def show_status(msg):
 27 display.fill_rect(0, 30, 240, 50, BLACK)
 28 display.draw_text(msg, 10, 50, color=YELLOW, scale=2)
 29
 30 def start_race():
 31 show_status("Start race...")
 32 for i in range(4):
 33 trumpet.set_pitch(440)
 34 trumpet.play()
 35 sleep(0.1)
 36 trumpet.stop()
 37 sleep(0.1)
 38 trumpet.set_pitch(880)
 39 trumpet.play()
 40 sleep(0.2)
 41 trumpet.stop()
 42
 43 def toggle_music():
 44 global is_playing
 45 is_playing = not is_playing
 46 if is_playing:
 47 show_status("Started music...")
 48 music_track.play(loop=True)
 49 else:
 50 show_status("Stopped music!")
 51 music_track.stop()
 52

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 151 of 295

 53 def finish_race():
 54 show_status("Finish race...")
 55 trumpet.play()
 56
 57 for freq1 in range(500, 1500, 100):
 58 for freq2 in range(freq1, freq1+1000, 100):
 59 trumpet.set_pitch(freq2)
 60 sleep(0.023)
 61
 62 for repeats in range(10):
 63 trumpet.play()
 64 sleep(0.1)
 65 trumpet.stop()
 66 sleep(0.05)
 67
 68 trumpet.stop()
 69
 70 def warning():
 71 show_status("Warning sound...")
 72 siren.set_pitch(440)
 73 siren.play()
 74 siren.glide(880, 1.5)
 75 sleep(1.5)
 76 siren.glide(440, 1.5)
 77 sleep(1.5)
 78 siren.stop()
 79
 80 def action_buttons():
 81 if buttons.was_pressed(BTN_A):
 82 if menu_index == 0:
 83 toggle_music()
 84 elif menu_index == 1:
 85 start_race()
 86 elif menu_index == 2:
 87 finish_race()
 88 elif menu_index == 3:
 89 warning()
 90
 91 menu_index = 0
 92 menu_y = [80, 120, 160, 200]
 93 init = True
 94 show_status("Scroll=U/D Select=A")
 95
 96 trumpet = soundmaker.get_tone('trumpet')
 97 music_track = soundmaker.get_mp3('sounds/funk', play=False)
 98 is_playing = False
 99 siren = soundmaker.get_tone('violin')
100
101 while True:
102 prev_sel = menu_index
103 menu_buttons()
104 if menu_index != prev_sel or init:
105 init = False
106 display.fill_rect(0, menu_y[prev_sel], 240, 40, BLACK)
107 display.fill_rect(0, menu_y[menu_index], 240, 40, DARK_BLUE)
108 screen_layout()
109
110 action_buttons()
111

Mission 13 Complete

SOUNDS Like a Plan!
Excellent work!!

You've saved the day at the cycling event, AND gained some useful audio engineering skills.

Plus you made an amazing UI that could be adapted to a LOT of other applications!

RIDE ON !

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 152 of 295

Mission 14 - Line Art

Digital Artistry
This mission will lead you on a journey to discover the magic of computer graphics:

Making beautiful visual art with just a few lines of code!

Pixel Power

It all starts with a pixel drawn on the screen. But as you've seen, things get much more interesting
when you loop your code to create patterns of logic, sounds, and light!

for the Win!

As you complete this mission you'll gain a mastery of the for loop, a versatile tool to have in your coding arsenal.

Ready to visualize a range of colorful pixels streaming across your LCD screen?

Objective 1 - Pixel Power

Pixel Power
You've already drawn on the screen using the bitmap functions, like display.draw_rect() and friends.

Rectangles and circles - outlined and filled - are the basic shapes in that API.
But there'a a more fundamental particle of graphics goodness, that those other shapes are
made from.

Draw a single RED pixel at x=10, y=10
display.set_pixel(10, 10, RED)

The CodeX LCD contains 240x240 pixels.

That's 240 pixels from left to right: x=0 → x=239
And 240 pixels from top to bottom: y=0 → y=239

Reading Pixels

Your code can write pixel colors to the display, but it can also read them back!

Read the color of the pixel at x=10, y=10
c = display.get_pixel(10, 10)
print("Color = ", c) # Print to the console

 To the Console!

Remember the debug console? Click the at the bottom-right to open it up.

That's where you inspected variables before.
But you can also print messages there!
This will be very useful since your LCD is now dedicated to ART!

Create a New File!

Use the File → New File menu to create a new file called PixelPlay.

Check the 'Trek!

CodeTrek:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 153 of 295

 1 from codex import *
 2
 3 # Draw a white pixel on the screen
 4 display.set_pixel(120, 120, WHITE)

 5
 6 # Draw six pixels with different locations and colors
 7 display.set_pixel(212, 58, RED)
 8 # TODO: Light up at least five more pixels

 9
10 # Get and print one of the pixel colors
11 my_pix = display.get_pixel(212, 58)
12 print ('Pixel:', my_pix)

13

Goals:

First pixel

Draw a pixel on the screen with display.set_pixel() at x=120 and y=12 0.

Use a bright color like YELLOW or WHITE. Try any of the built-in RGB Colors, or define your own tuple!

Pixel MIXel!

Draw 6 more pixels at different locations on the screen with different colors.

Try to figure out where they should appear on the screen before you run the code.

Are they where you expected?

Reading Pixels

Use display.get_pixel() to read the RGB Color value of one of the pixels you drew.

Use print() to display the tuple value in the console window.

Tools Found: Bitmap, API, LCD, Print Function, Variables, RGB Colors, tuple

Solution:

 1 from codex import *
 2
 3 # Draw a white pixel on the screen
 4 display.set_pixel(120, 120, WHITE)
 5
 6 # Draw six pixels at different locations with different colors (constants)
 7 display.set_pixel(212, 58, RED)
 8 display.set_pixel(210, 62, GREEN)
 9 display.set_pixel(219, 53, BLUE)
10 display.set_pixel(202, 47, YELLOW)

Just a single bright point in the middle of your screen!

Get Creative

Scatter some brilliant RGB colors across the screen.

"Farmboy, fetch me that Pixel?"

As you wish.

(Just be sure the x,y location is one you lit up above!)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 154 of 295

11 display.set_pixel(195, 42, CYAN)
12 display.set_pixel(222, 64, MAGENTA)
13
14 # Get one of the pixel colors
15 print ('Pixel:', display.get_pixel(212, 58))
16

Quiz 1 - Pixel Basics

Answer the questions below about the following code:

display.set_pixel(200, 200, CYAN)
c = display.get_pixel(200, 200)
print("Color = ", c)

Question 1: Where on the CodeX display does the CYAN pixel appear?

 Lower Right

 Upper Left

 Upper Right

 Lower Left

Question 2: What is printed on the console?

You either need to consult the RGB Colors documentation, or just try it for yourself!

 Color = (0, 252, 248)

 Color = (0, 0, 0)

 Color = (0, 255, 255)

 Color = (144, 210, 48)

Objective 2 - Line Up

Line Up!
Now that you've mastered pixels...

Seriously, you pretty much know all there is to know about them!

What do you call a bunch of pixels in a row?

wait for it...

A LINE!
So what are you waiting for?

The LCD is 240 pixels wide.
Just copy-and-paste that display.set_pixel() 240 times, right?

Don't You Dare!
This is what loops are made for!

Modify Your Code

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 155 of 295

Delete all those set_pixel() lines, and replace them with a loop.

Check the 'Trek!

A single lovely for loop is all you need to acheive the goal below!

CodeTrek:

1 from codex import *
2
3 # Red line
4 for x in range(???): # TODO
5 display.set_pixel(x, ???, RED) # TODO

Goal:

Draw a horizontal RED line across the screen.

Span the full width: x=0 → x=239

The y-coordinate should be constant y=120

Tools Found: Pixel, LCD, Loops, Ranges

Solution:

1 from codex import *
2
3 # Red line
4 for x in range(240):
5 display.set_pixel(x, 120, RED)

Objective 3 - Two Axes to Grind

Add a Vertical Axis
You have a nice horizontal line. Adding a vertical line to match will create a perfect reference for drawing additional "line art" in this
mission.

Getting Centered

Your code currently uses "magic numbers" like 240 for the display width, and 120 for the center.

Numbers that just appear in the code with no explanation must be magic... but not the good kind.
Other programmers trying to understand your code might have no idea what they mean.
And when things change in the future, like getting a bigger display for example, the magic goes "poof!"

You can eliminate the magic numbers here by getting the display width and height straight from the source - the display bitmap
itself.

display is a bitmap, and every bitmap has width and height properties
w = display.width
h = display.height

Now it's obvious what w and h are!

Look mom, no magic!

Fix Those TODO's

1. The range of x is the width of the screen. How many pixels wide is it?
2. Mark the center line at a y value of 120

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 156 of 295

Heads Up!
You'll get an ERROR when this code runs.

Fear not. Proceed to the next Objective to get it sorted out...

CodeTrek:

 1 from codex import *
 2
 3 # Use half display width and half height to find
 4 # the center of the screen.
 5 x_center = display.width / 2
 6 y_center = display.height / 2

 7
 8 # Draw a horizontal line of pixels in the center
 9 # of the screen.
10 for x in range(display.width):
11 display.set_pixel(x, y_center, RED)

12
13 # Draw a vertical line of pixels in the center of the screen
14 for y in range(display.height):
15 display.set_pixel(x_center, y, RED)

16

Goals:

Eliminate Magic Numbers

Use display.width and display.height rather than literal numbers.

The X Axis

Draw a horizontal line of red pixels in the center of the screen.

The Y Axis

Draw a vertical line of red pixels in the center of the screen.

Tools Found: Bitmap, Variables, Ranges

Solution:

 1 from codex import *
 2
 3 # Use half display width and half height to find the center of the screen
 4 x_center = display.width / 2
 5 y_center = display.height / 2
 6

Calculate the center by dividing the screen in half!

Horizontal line

Just modify your line loop to use display.width and the new y_center variable.

Vertical line

Add a new loop, just like your horizontal one above.

Except here the y value ranges over display.height
And the x_center is constant.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 157 of 295

 7 # Draw a horizontal line of pixels in the center of the screen
 8 for x in range(display.width):
 9 display.set_pixel(x, y_center, RED)
10
11 # Draw a vertical line of pixels in the center of the screen
12 for y in range(display.height):
13 display.set_pixel(x_center, y, RED)
14

Objective 4 - Bug Fix

Bug Fix

If you dig deep into the bitmap documentation for set_pixel() you will find that the x and y arguments you give it must be ints.

Quite often when coding you learn things like this as much by trying it as you do by studying the documentation.
Be fearless - try stuff!

Check the 'Trek!

The CodeTrek will guide you in fixing this bug,

CodeTrek:

 1 from codex import *
 2
 3 # Use half display width and half height to find the center of the screen
 4 x_center = int(display.width / 2)
 5 y_center = int(display.height / 2)

 6
 7 # Draw a horizontal line of pixels in the center of the screen
 8 for x in range(display.width):
 9 display.set_pixel(x, y_center, RED)
10
11 # Draw a vertical line of pixels in the center of the screen
12 for y in range(display.height):
13 display.set_pixel(x_center, y, RED)
14

Goal:

Eliminate the error and show me some horizontal and vertical axes!

Tools Found: Bitmap, Keyword and Positional Arguments, int, float

Solution:

 1 from codex import *
 2
 3 # Use half display width and half height to find the center of the screen
 4 x_center = int(display.width / 2)
 5 y_center = int(display.height / 2)
 6
 7 # Draw a horizontal line of pixels in the center of the screen

Type Conversion to int

Easy-Peasy fix!

The division resulted in the answer 120.0
That's correct, but the decimal point means it's a float, not an int.

Since you now know display.set_pixel() wants ints for x and y coordinates,
you can use the int() bulit-in to convert it!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 158 of 295

 8 for x in range(display.width):
 9 display.set_pixel(x, y_center, RED)
10
11 # Draw a vertical line of pixels in the center of the screen
12 for y in range(display.height):
13 display.set_pixel(x_center, y, RED)
14

Objective 5 - Graphical Grid

Graphical Grid
Your X and Y axes will help with symmetry and balance as you create artistic designs.

But it is still difficult to judge scale at a glance.
You need to create a grid of dots to clearly show pixel spacing over the whole
screen!

Dot dot dot...

Each "dot" is just a single white pixel.

You could draw a single line of white dots like this:

for x in range(0, display.width, 10):
 display.set_pixel(x, y, WHITE)

Notice how this uses the step parameter of the range(start, stop, step) function to advance x by 10 every loop

Enter the Matrix
You'll need more than a single line of dots to complete this Objective.

A grid that covers the whole screen is what you're after!
But isn't that just a bunch of single dotted lines, drawn top to bottom?

Check the 'Trek!

The CodeTrek will show you how to loop the loop and make a merry matrix!

CodeTrek:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10

 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a horizontal line of pixels in the center of the screen
11 for x in range(display.width):
12 display.set_pixel(x, y_center, RED)
13
14 # Draw a vertical line of pixels in the center of the screen
15 for y in range(display.height):
16 display.set_pixel(x_center, y, RED)
17
18 # Draw a grid of white pixels to cover the entire screen
19 for y in range(0, display.height, GRID):
20 for x in range(0, display.width, GRID):

Define a grid spacing constant.

Excellent self-documenting code!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 159 of 295

21 display.set_pixel(x, y, WHITE)

22

Goal:

The Pixel Grid

Draw a grid of white pixels to cover the entire screen with a 10 pixel space between each white pixel.

Tools Found: Ranges, Constants, Loops

Solution:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10 #@1
 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a horizontal line of pixels in the center of the screen
11 for x in range(display.width):
12 display.set_pixel(x, y_center, RED)
13
14 # Draw a vertical line of pixels in the center of the screen
15 for y in range(display.height):
16 display.set_pixel(x_center, y, RED)
17
18 # Draw a grid of white pixels to cover the entire screen
19 for y in range(0, display.height, GRID):
20 for x in range(0, display.width, GRID):
21 display.set_pixel(x, y, WHITE) #@2
22

Quiz 2 - Graphics Ranger

The following code draws a dashed line across the screen.

for d in range(0, 240, 20):
 for x in range(d, d + 10):
 display.set_pixel(x, 120, WHITE)

Question 1: What is the orientation of the dashed line?

 Horizontal

 Vertical

 Diagonal

Question 2: How many pixels long is each dash?

 10

Draw the Grid

There are 2 loops here, an inner and an outer loop.

The inner loop draws a horizontal dotted line.
The outer loop steps to the next y and does it again!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 160 of 295

 20

 40

 1

Objective 6 - Keep It Simple

Simplify and Optimize
You've transformed your screen into a fantastic canvas for graphical artistry!

But before you move on you should neaten it up a bit.

Line Drawing Function

So far you've drawn horizontal and vertical lines using for loops, which is awesome.

But the CodeX bitmap module has built-in line drawing functions which are faster, simpler, and support drawing diagonal lines
too!

So, it's time to simplify and optimize your code, by replacing your line-drawing loops with the bitmap function, which is defined as
follows:

Draw a line from point (x1,y1) to
point (x2,y2)
display.draw_line(x1, y1, x2, y2, color)

Frame it Up!

While you're at it, use the bitmap outlined rectangle function to create a BLUE border around the screen.

Here's how that function is defined:

Draw a rectangle outline with upper left
corner (x1,y1) and given width,height.
draw_rect(x1, y1, width, height, color)

Save to a New File!

Use the File → Save As menu to create a new file called LineArt.

CodeTrek:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10
 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a grid of white pixels to cover the entire screen
11 for y in range(0, display.height, GRID):
12 for x in range(0, display.width, GRID):
13 display.set_pixel(x, y, WHITE)
14
15 # Draw a horizontal line in the center of the screen
16 display.draw_line(0, y_center, display.width - 1, y_center, RED)
17
18 # Draw a vertical line in the center of the screen
19 display.draw_line(x_center, 0, x_center, display.height - 1, RED)

Replace your line loops

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 161 of 295

20
21 # Draw a blue border
22 display.draw_rect(0, 0, display.width, display.height, BLUE)

23

Goals:

The X Axis Line

Draw a horizontal red line in the center of the screen using the display.draw_line() function.

The Y Axis Line

Draw a vertical red line in the center of the screen using the display.draw_line() function.

The Border Rectangle

Draw a blue border rectangle using the display.draw_rect() function.

Tools Found: Loops, Bitmap

Solution:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10
 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a grid of white pixels to cover the entire screen
11 for y in range(0, display.height, GRID):
12 for x in range(0, display.width, GRID):
13 display.set_pixel(x, y, WHITE)
14
15 # Draw a horizontal line in the center of the screen
16 display.draw_line(0, y_center, display.width - 1, y_center, RED)
17
18 # Draw a vertical line in the center of the screen
19 display.draw_line(x_center, 0, x_center, display.height - 1, RED) #@1
20
21 # Draw a blue border
22 display.draw_rect(0, 0, display.width, display.height, BLUE) #@2
23

Objective 7 - Get Artistic

Time to Get Artistic!
You're working with straight lines, how artistic can you get?

Well, you might be surprised!
Straight lines can get downright curvy!

Draw some lines

Notice as starting Y moves down, ending X moves to the right.

You might want to move them to AFTER you draw the grid, so the RED lines are on TOP.

Blue bounding box border, baby.

Booyah!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 162 of 295

Note: Unlike the graph above, CodeX Y-axis values increase from the top down.

Whoa! String Art :-)

Watch the animated curve below! That's an envelope friends...

By Sam Derbyshire - English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=5232197

Check the 'Trek!

Alright, no more stringing you along, it's time to DO THIS. The CodeTrek will guide you artfully.

CodeTrek:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10
 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a grid of white pixels to cover the entire screen
11 for y in range(0, display.height, GRID):
12 for x in range(0, display.width, GRID):
13 display.set_pixel(x, y, WHITE)
14
15 # Draw a horizontal line in the center of the screen

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 163 of 295

https://en.wikipedia.org/wiki/Envelope_(mathematics)

16 display.draw_line(0, y_center, display.width - 1, y_center, RED)
17
18 # Draw a vertical line in the center of the screen
19 display.draw_line(x_center, 0, x_center, display.height - 1, RED)
20
21 # Draw a blue border
22 display.draw_rect(0, 0, display.width, display.height, BLUE)
23
24 # Draw a white spider web (aka. envelope) in the lower left corner
25 # with 7 lines spaced every 40 pixels
26 # start(x,y) end(x,y)
27 display.draw_line(0, 0, 0, 239, WHITE)
28 display.draw_line(0, 40, 40, 239, WHITE)
29 display.draw_line(0, 80, 80, 239, WHITE)
30 display.draw_line(0, 120, 120, 239, WHITE)
31 display.draw_line(0, 160, 160, 239, WHITE)
32 display.draw_line(0, 200, 200, 239, WHITE)
33 display.draw_line(0, 239, 239, 239, WHITE)

34

Hint:

Tedious String Art?

Okay, this code is pretty repetitive. Don't worry, you'll be upgrading this to use a loop in the next Objective.

But for now you must suffer!

Goal:

White Webbing

Draw one white spider web (aka. envelope) in the lower left hand corner of your CodeX display using 7 lines spaced every 40
pixels.

Tools Found: Display

Solution:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10
 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a grid of white pixels to cover the entire screen
11 for y in range(0, display.height, GRID):
12 for x in range(0, display.width, GRID):
13 display.set_pixel(x, y, WHITE)
14
15 # Draw a horizontal line in the center of the screen
16 display.draw_line(0, y_center, display.width - 1, y_center, RED)
17
18 # Draw a vertical line in the center of the screen
19 display.draw_line(x_center, 0, x_center, display.height - 1, RED)
20
21 # Draw a blue border
22 display.draw_rect(0, 0, display.width, display.height, BLUE)
23

NOTICE !

Start X and End Y are always the same: x=0 and y=239

Increasing start Y and end X is how you slide the line down the screen...

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 164 of 295

24 # Draw a white spider web (aka. envelope) in the lower left corner
25 # with 7 lines spaced every 40 pixels
26 display.draw_line(0, 0, 0, 239, WHITE)
27 display.draw_line(0, 40, 40, 239, WHITE)
28 display.draw_line(0, 80, 80, 239, WHITE)
29 display.draw_line(0, 120, 120, 239, WHITE)
30 display.draw_line(0, 160, 160, 239, WHITE)
31 display.draw_line(0, 200, 200, 239, WHITE)
32 display.draw_line(0, 239, 239, 239, WHITE)
33

Objective 8 - Loop Art

Automate Your Art
Hey, that's a pretty cool display!

But if you're gonna make more "webs" it would be nice to automate some of those magic numbers, and reduce the lines of
code.

Your web spinning followed this plan:

1. End1 of the string starts at Upper Left (UL) of screen (0,0)
2. End2 of string starts at Lower Left (LL) of screen (0,239)
3. Move End1 down 40 pixels (+Y)
4. Move End2 right 40 pixels (+X)
5. Repeat moves

Track the line endpoints with your hands:

Left index finger → End1
Right index finger → End2
Notice where you start.
Left moves down, Right moves to the right...

Now that it's firmly in your mind...

Try it with a loop !

for i in range(0, 240, 40):
 display.draw_line(0, i, # End1: from UL go down
 i, 239, # End2: from LL go right
 WHITE)

I've expanded display.draw_line(x1, y1, x2, y2, color) across 3 lines to put comments on the End1 and End2 parts:

Check the 'Trek!

Your Turn!

Replace your white web code with the loop version above!

CodeTrek:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10
 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a grid of white pixels to cover the entire screen
11 for y in range(0, display.height, GRID):
12 for x in range(0, display.width, GRID):
13 display.set_pixel(x, y, WHITE)
14

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 165 of 295

15 # Draw a horizontal line in the center of the screen
16 display.draw_line(0, y_center, display.width - 1, y_center, RED)
17
18 # Draw a vertical line in the center of the screen
19 display.draw_line(x_center, 0, x_center, display.height - 1, RED)
20
21 # Draw a blue border
22 display.draw_rect(0, 0, display.width, display.height, BLUE)
23
24 # Draw a white spider web (aka. envelope) in the lower left corner
25 WEB_SPACING = ??
26 for i in range(0, 240, WEB_SPACING):
27 display.draw_line(0, i, # from UL go down
28 i, 239, # from LL go right
29 WHITE)

30

Goals:

Use a loop to draw a web in the lower-left corner.

Create a constant WEB_SPACING and try setting it to a value less than 4 0.

Experiment with a few values!

Tools Found: Loops, Constants

Solution:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10
 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a grid of white pixels to cover the entire screen
11 for y in range(0, display.height, GRID):
12 for x in range(0, display.width, GRID):
13 display.set_pixel(x, y, WHITE)
14
15 # Draw a horizontal line in the center of the screen
16 display.draw_line(0, y_center, display.width - 1, y_center, RED)
17
18 # Draw a vertical line in the center of the screen
19 display.draw_line(x_center, 0, x_center, display.height - 1, RED)
20
21 # Draw a blue border
22 display.draw_rect(0, 0, display.width, display.height, BLUE)
23
24 # Draw a white spider web (aka. envelope) in the lower left corner
25 WEB_SPACING = 20
26 for i in range(0, 240, WEB_SPACING):
27 display.draw_line(0, i, # from UL go down
28 i, 239, # from LL go right
29 WHITE)
30

Objective 9 - Get Colorful

Replace the web-drawing code with a loop.

I've added a constant for WEB_SPACING.
What should the value of that be?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 166 of 295

A Splash of Color!
Take some time to experiment with the code you have now.

Art is all about experimentation!

Run It!

Try some different colors.

CHALLENGE: Can you get webs in all four corners?

Example to get you started!
for i in range(0, 240, WEB_SPACING):
 display.draw_line(0, i, # from UL go down
 i, 239, # from LL go right
 MAGENTA)

 display.draw_line(i, 239, # from LL go right
 239, 239 - i, # from LR go up
 GREEN)

More Flexible Webbing

Check the 'Trek!

CodeTrek:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10
 5
 6 # Use half display width and half height to find the center of the screen
 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a grid of white pixels to cover the entire screen
11 for y in range(0, display.height, GRID):
12 for x in range(0, display.width, GRID):
13 display.set_pixel(x, y, WHITE)
14
15 # Draw a horizontal line in the center of the screen
16 display.draw_line(0, y_center, display.width - 1, y_center, RED)
17
18 # Draw a vertical line in the center of the screen
19 display.draw_line(x_center, 0, x_center, display.height - 1, RED)
20
21 # Draw a blue border
22 display.draw_rect(0, 0, display.width, display.height, BLUE)
23
24 def draw_web(x1, y1, x2, y2, count, color):
25 """Draw web, rotating line counterclockwise,
26 P1 chasing P2."""

27 # Calculate step size "deltas" for x and y
28 dx1 = int((x2 - x1) / count)
29 dy1 = int((y2 - y1) / count)

Define a new function.

Looks a lot like display.draw_line() but with one more parameter, count.
It draws count lines while moving P1 x1,y1 toward P2 x2,y2.

Notice the docstring comment? Triple-quotes surround this multi-line style comment
which is used in Python to describe functions and modules.

(You don't HAVE to copy this comment as-is... Make it your own!)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 167 of 295

30 dx2 = dy1
31 dy2 = -dx1

32
33 # Draw line and move endpoints by dx,dy each loop
34 for i in range(count):
35 display.draw_line(x1, y1, x2, y2, color)
36 x1 = x1 + dx1
37 y1 = y1 + dy1
38 x2 = x2 + dx2
39 y2 = y2 + dy2

40
41 WEB_SPACING = 20
42
43 # String some art!
44 draw_web(0,0, 0,239, WEB_SPACING, GREEN)
45 draw_web(0,239, 239,239, WEB_SPACING, YELLOW)
46 draw_web(??,??, 239,0, WEB_SPACING, CYAN)
47 draw_web(239,0, ??,??, WEB_SPACING, MAGENTA)
48 draw_web(120,0, 120,120, WEB_SPACING, ORANGE)
49 draw_web(??,??, 120,120, WEB_SPACING, RED)
50 draw_web(120,239, ??,??, WEB_SPACING, WHITE)
51 draw_web(239,120, 120,120, WEB_SPACING, PINK)

52

Goals:

Define a function def draw_web(x1, y1, x2, y2, count, color): that starts with a line between P1--P2 and spins it
counterclockwise to make a web!

Draw at least 6 different colorful webs using your new function.

Unleash your inner artiste

Tools Found: Functions, Parameters, Arguments, and Returns, Comments, import, Built-In Functions, int

Solution:

 1 from codex import *
 2
 3 # Grid spacing (pixels)
 4 GRID = 10
 5
 6 # Use half display width and half height to find the center of the screen

Calculate the deltas:

A "delta" is a small change to a value.
For example if you're changing x you might call a small change dx, for "delta x".

Here you are moving P1 toward P2, in count steps.

Use the int() type conversion built-in since set_pixel() requires integers.
P2 moves perpendicular to P1, in a counterclockwise direction.

Step and Repeat!

Draw a line
Adjust endpoints by "deltas"
Do it again!

Make it Beautiful!

I've given you a start, but you'll need to fill in some points!
You can use ANY two points for x1,y1 and x2,y2.
But remember the "toothpick" only rotates counterclockwise as P1 slides in to P2's spot.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 168 of 295

 7 x_center = int(display.width / 2)
 8 y_center = int(display.height / 2)
 9
10 # Draw a grid of white pixels to cover the entire screen
11 for y in range(0, display.height, GRID):
12 for x in range(0, display.width, GRID):
13 display.set_pixel(x, y, WHITE)
14
15 # Draw a horizontal line in the center of the screen
16 display.draw_line(0, y_center, display.width - 1, y_center, RED)
17
18 # Draw a vertical line in the center of the screen
19 display.draw_line(x_center, 0, x_center, display.height - 1, RED)
20
21 # Draw a blue border
22 display.draw_rect(0, 0, display.width, display.height, BLUE)
23
24 def draw_web(x1, y1, x2, y2, count, color):
25 """Draw web, rotating line counterclockwise,
26 end1 chasing end2."""
27 # Calculate step size "deltas" for x and y
28 dx1 = int((x2 - x1) / count)
29 dy1 = int((y2 - y1) / count)
30 dx2 = dy1
31 dy2 = -dx1
32
33 # Draw line and move endpoints by dx,dy each loop
34 for i in range(count):
35 display.draw_line(x1, y1, x2, y2, color)
36 x1 = x1 + dx1
37 y1 = y1 + dy1
38 x2 = x2 + dx2
39 y2 = y2 + dy2
40
41 WEB_SPACING = 20
42
43 # String some art!
44 draw_web(0,0, 0,239, WEB_SPACING, GREEN)
45 draw_web(0,239, 239,239, WEB_SPACING, YELLOW)
46 draw_web(239,239, 239,0, WEB_SPACING, CYAN)
47 draw_web(239,0, 0,0, WEB_SPACING, MAGENTA)
48 draw_web(120,0, 120,120, WEB_SPACING, ORANGE)
49 draw_web(0,120, 120,120, WEB_SPACING, RED)
50 draw_web(120,239, 120,120, WEB_SPACING, WHITE)
51 draw_web(239,120, 120,120, WEB_SPACING, PINK)
52
53

Mission 14 Complete

Sweet Drawings!
Of course, "string art" is only a small taste of how you can get creative with computer graphics.

An excellent "creativity hack" is to experiment with constraints - like only drawing with straight lines.
You can of course do ANYTHING with individual pixels, but limiting yourself to lines only opened up
a surprising amount of artistic discovery!

Imagine...
Smallness is one of the cool things about the CodeX.

There is only so much space in which to play.
So with a little bit of effort, you can make a big impact!
And there are an infinite number of ways you'll discover to let your creativity shine!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 169 of 295

Mission 15 - Handball

Handball!
Ready to develop a truly iconic video game?

This is the first of a 2-part Mission sequence

1. Handball

Build a handheld gaming framework, culminating in a fun, playable game.

2. Breakout

Enhance your game, reproducing an all-time arcade classic!

The Game Plan
This mission will lead you on a step-by-step journey to develop a retro video game of American Handball.

The game is like a 1-player version of the classic "Pong".
Buttons move a paddle side-to-side across the bottom of the screen.
A ball bounces off the sides and top of the screen.
Score points by hitting the ball with your paddle.
You get 3 "lives" - lose those balls and it's GAME OVER!

Buckle up! You're following in the footsteps of game development LEGENDS.

Objective 1 - BallX

Settle Into the Effort...
Relax, this Mission will not throw a bunch of new Python knowledge at you!

You will mostly be using what you have already learned.
Not too difficult, right?

WRONG!
You'll recognize the Python concepts, but it will still be a challenge to piece together the logic and flow of the game.

But you CAN do it!
Slow down and be sure you understand each Objective before moving on!
DO NOT TYPE CODE YOU DON'T UNDERSTAND!

Create a New File!

Use the File → New File menu to create a new file called Handball.

Begin with a Ball
For starters, draw a ball and move it horizontally across the screen.

The ball in retro-handball is a square :-)
Just like before when you did animation, remember to erase the old position.

Check the 'Trek!

Basically, you need a loop where you:

Draw the ball
Update the position (just increase X for now)
Erase the ball

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 170 of 295

Repeat!

Physics Much?

You're creating a very basic physics engine here! This Python code models the mechanics of velocity, distance, and time. Check the

 Hints for more details.

CodeTrek:

 1 from codex import *
 2 import time

 3
 4 BALL_SZ = 4
 5
 6 def draw_ball():
 7 global ball_pix
 8 pix = round(ball_pos) # Round to nearest pixel
 9 if pix != ball_pix:
10 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, BLACK)
11 ball_pix = pix
12 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, WHITE)

13
14 def serve_ball():
15 global ball_pos, ball_v, ball_pix
16 ball_v = 0.200 # 200 pixels per second
17 ball_pos = 0.0
18 ball_pix = round(ball_pos)

19
20 serve_ball()
21
22 while True:
23 dt = 10 # ms
24
25 # Update ball position
26 x = ball_pos
27 x = x + ball_v * dt
28
29 ball_pos = x
30 draw_ball()
31
32 # Pace the animation

What, no sleep ?

This time you're doing import like the pros.
Relax, if you need sleep() you can say time.sleep()

Draw the Ball

It's just a rectangle. Erase the old location with a BLACK rectangle, then Draw
the new WHITE one.

Notice the round() built-in function?
The main loop uses floats for accuracy, but round to an int
for drawing on the screen.
Save the ball_pix global variable so you know where to erase next time!

Serve the Ball

The ball is defined by some global variables:

ball_pos = The float screen x-coordinate of the ball's position.
ball_v = The ball's velocity (speed) in the X direction. The velocity
is in "pixels per millisecond". So x1000 gives you "pixels per second".
ball_pix = The ball's int screen x-pixel location.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 171 of 295

33 time.sleep_ms(dt)

34
35
36
37
38

Hint:

Understanding the Timing

This code uses sleep_ms() which is like sleep() but delays for the specified time in milliseconds rather than seconds.

There are 1000 milliseconds in 1 second.

To update the ball's x-coordinate, you need to know two things:

1. How fast is the ball moving? (the ball velocity)
2. How much time has passed since you last moved the ball? (dt = delta time)

Example:

If the ball moves 200 pixels every 1000 milliseconds, how far does it travel in dt = 10 ms?

So at that speed (0.200 pixels / ms) you'd need to move the ball by 2 pixels each time, at 10ms per loop.

Add distance to X, each time through loop.
x = x + ball_v * dt

Goals:

Define a draw_ball() function.

Define a serve_ball() function.

Call serve_ball() before your main loop.

Call draw_ball() inside the loop.

Tools Found: Loops, Functions, import, Locals and Globals, float, int, Built-In Functions

Solution:

 1 from codex import *
 2 import time
 3
 4 BALL_SZ = 4
 5
 6 def draw_ball():
 7 global ball_pix
 8 pix = round(ball_pos) # Round to nearest pixel
 9 if pix != ball_pix:

Main Game Loop

This is set up for you to expand on later.

Each loop takes "delta time" of 10ms (remember, delta means change)
Update the position:
Draw the ball (erase old position first)
Sleep to pace the movement

distance = speed ∗ time

velocity = = = 0.200pix/ms
time

distance
1000ms
200pix

distance = velocity ⋅ time = 0.200 ⋅ 10 = 2pixels
ms
pix

ms

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 172 of 295

10 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, BLACK)
11 ball_pix = pix
12 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, WHITE)
13
14 def serve_ball():
15 global ball_pos, ball_v, ball_pix
16 ball_v = 0.2
17 ball_pos = 0.0
18 ball_pix = round(ball_pos)
19
20 serve_ball()
21
22 while True:
23 dt = 10 # ms
24
25 # Update ball
26 x = ball_pos
27 x = x + ball_v * dt
28
29 ball_pos = x
30 draw_ball()
31
32 # Slow
33 time.sleep_ms(dt)

Quiz 1 - Start Up!

Question 1: How many milliseconds are in 1 second?

 1000

 0.001

 1 million

 100

Question 2: Say the ball moves at a velocity of pixel per millisecond.

How far would it move in 10 milliseconds?

 5 pixels

 10 pixels

 50 pixels

 20 pixels

Question 3: Your game loop uses a global variable ball_v for the ball's velocity. Where is this variable initialized? (first assigned
to)

 Inside the serve_ball() function.

 At the beginning of the game loop.

 Inside the draw_ball() function.

Objective 2 - Bounce X

Tracking the Ball?
Your ball should fly across the CodeX screen from left to right each time you run your program.

 2
1

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 173 of 295

If that's not happening, stop and debug your code!
After it flies off the right side it disappears forever.

Next Step - Bounce!

In Handball the ball bounces off walls.

Keep your ball on the screen by making it bounce when it reaches either edge of the screen.

Run It!

Test Your Code
Is your ball bouncing back and forth?

CodeTrek:

 1 from codex import *
 2 import time
 3
 4 BALL_SZ = 4
 5
 6 def draw_ball():
 7 global ball_pix
 8 pix = round(ball_pos) # Round to nearest pixel
 9 if pix != ball_pix:
10 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, BLACK)
11 ball_pix = pix
12 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, WHITE)
13
14 def serve_ball():
15 global ball_pos, ball_v, ball_pix
16 ball_v = 0.2
17 ball_pos = 0.0
18 ball_pix = round(ball_pos)
19
20 serve_ball()
21
22 while True:
23 dt = 10 # ms
24
25 # Update ball
26 x = ball_pos
27 x = x + ball_v * dt
28
29 # Check for collision with walls
30 if x <= 0 or x >= 240 - BALL_SZ:

31 ball_v = ?? # TODO: reverse direction

32
33 ball_pos = x
34 draw_ball()
35
36 # Slow
37 time.sleep_ms(dt)

Stay in Bounds

The display is 240 pixels wide, so the edges are 0 and 239.

Notice on the right side you have to account for BALL_SZ since you want to bounce
as soon as the right edge of the ball hits the wall!

Bounce by reversing the direction along the X-axis.

Multiplying by -1 will change the sign from positive X direction to negative and vice-versa.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 174 of 295

Hint:

Rebound Math
When your ball hits a wall, how should its velocity change?

The Handball game keeps things simple: the walls perfectly reverse the direction of the ball.

The left and right walls reverse the X component of velocity.

Later when you add top and bottom walls, they will reverse the Y component.

Multiply by (-1) to reverse the ball's X direction.
ball_v = ball_v * -1

Goal:

Reverse the direction of the ball when it hits the left or right edge of the screen.

Tools Found: Display

Solution:

 1 from codex import *
 2 import time
 3
 4 BALL_SZ = 4
 5
 6 def draw_ball():
 7 global ball_pix
 8 pix = round(ball_pos) # Round to nearest pixel
 9 if pix != ball_pix:
10 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, BLACK)
11 ball_pix = pix
12 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, WHITE)
13
14 def serve_ball():
15 global ball_pos, ball_v, ball_pix
16 ball_v = 0.2
17 ball_pos = 0.0
18 ball_pix = round(ball_pos)
19
20 serve_ball()
21
22 while True:
23 dt = 10 # ms
24
25 # Update ball
26 x = ball_pos
27 x = x + ball_v * dt
28
29 # Check for collision with walls
30 if x <= 0 or x >= 240 - BALL_SZ:
31 ball_v = ball_v * -1
32
33 ball_pos = x
34 draw_ball()
35
36 # Slow
37 time.sleep_ms(dt)

Objective 3 - No Sleep

No Sleeping!
This is to be a fast paced game, right?

You'll want to check button inputs quickly, and you can't do that when CodeX is sleeping.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 175 of 295

I know, your 10ms loop is working just fine right now. But as you add more features to the game,
the code inside the loop will take time to run too.

Think about it. That sleep_ms() can only make your game slower, right?
You'll want to avoid any such blocking functions in your game loop!

Check the 'Trek!

Replace sleep_ms() with Calculated dt

You don't have to sleep, but you DO need to know what dt is, since you're using it to move
the ball!

CodeTrek:

 1 from codex import *
 2 import time
 3
 4 BALL_SZ = 4
 5
 6 def draw_ball():
 7 global ball_pix
 8 pix = round(ball_pos) # Round to nearest pixel
 9 if pix != ball_pix:
10 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, BLACK)
11 ball_pix = pix
12 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, WHITE)
13
14 def serve_ball():
15 global ball_pos, ball_v, ball_pix
16 ball_v = 0.2
17 ball_pos = 0.0
18 ball_pix = round(ball_pos)
19
20 def elapsed_ms():
21 """Returns milliseconds elapsed since last called"""
22 global ms
23 now = time.ticks_ms()
24 diff = time.ticks_diff(now, ms)
25 ms = now
26 return diff

27
28 serve_ball()
29
30 ms = ?? # initialize ms global to the current ticks_ms()

31
32 while True:
33 dt = elapsed_ms()

A function to Remember

This function remembers the millisecond count ms the last time you called it, and returns the difference
in milliseconds between then and now.

That elapsed time in milliseconds will be your delta time dt.
But wait, what about the first time you call elapsed_ms(). How does ms get initialized?

Initialize!

When your program first starts, set the value of the global ms.

After this, elapsed_ms() will work perfectly.

Calculate the dt delta time.

Instead of sleeping, you're measuring the time it takes.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 176 of 295

34
35 # Update ball
36 x = ball_pos
37 x = x + ball_v * dt
38
39 # Check for collision with walls
40 if x <= 0 or x >= 240 - BALL_SZ:
41 ball_v = ball_v * -1
42
43 ball_pos = x
44 draw_ball()
45
46 # Remove sleep!

47
48

Hint:

Initialization
Programs often need to set things up the initial (first) time. This is called "initialization".

"At the dawn of time... when the program first runs... do this."

Example:
ms = time.ticks_ms() # initialize ms global to the current millisecond count

Goals:

Remove the time.sleep_ms() call from your loop.

Define a new function elapsed_ms() that returns the number of milliseconds elapsed since the last time it was called.

Initialize ms to the current ticks_ms() before your loop begins.

Use elapsed_ms() to set your dt inside the loop.

Tools Found: Loops, Parameters, Arguments, and Returns, Functions, Locals and Globals

Solution:

 1 from codex import *
 2 import time
 3
 4 BALL_SZ = 4
 5
 6 def draw_ball():
 7 global ball_pix
 8 pix = round(ball_pos) # Round to nearest pixel
 9 if pix != ball_pix:
10 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, BLACK)
11 ball_pix = pix
12 display.fill_rect(ball_pix, 120, BALL_SZ, BALL_SZ, WHITE)
13
14 def serve_ball():
15 global ball_pos, ball_v, ball_pix
16 ball_v = 0.2

No more constant 10ms loops.
Depending on how much is happening inside your loop, dt will increase or decrease.

No more sleeping!

Remove your sleep delay.

From now on your loop will run as fast as possible.
Hmmm... you're still using dt to move the ball above. So if you're not controlling
the speed with sleep_ms() what does dt even mean??

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 177 of 295

17 ball_pos = 0.0
18 ball_pix = round(ball_pos)
19
20 def elapsed_ms():
21 """Returns milliseconds elapsed since last called"""
22 global ms
23 now = time.ticks_ms()
24 diff = time.ticks_diff(now, ms)
25 ms = now
26 return diff
27
28 serve_ball()
29
30 ms = time.ticks_ms()
31
32 while True:
33 dt = elapsed_ms()
34
35 # Update ball
36 x = ball_pos
37 x = x + ball_v * dt
38
39 # Check for collision with walls
40 if x <= 0 or x >= 240 - BALL_SZ:
41 ball_v *= -1
42
43 ball_pos = x
44 draw_ball()

Quiz 2 - Delta Force

Question 1: What do the letters D T stand for in the variable dt ?

 "delta time"

 "dog tired"

 "difference time"

 "delta tricep"

 "data test"

Question 2: What would you expect the value of dt to be after the following code runs?

elapsed_ms()
time.sleep_ms(42)
dt = elapsed_ms()

 42

 Error: No target for assignment.

 40

 10

Question 3: How does the function elapsed_ms() "remember" the millisecond value the last time it was called?

 The global ms saves milliseconds between function calls.

 All variables inside a function are preserved across calls.

 Computers don't remember. Eschew anthropomorphism.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 178 of 295

Objective 4 - Bounce 2D

Enter the 2nd Dimension
You're having a ball with the X-axis :-)

But your game needs movement in the Y-axis too!

The player needs to be able to bounce the ball at any angle across the screen.

X and Y ...living in 2D
Right now your code keeps only X values for three variables controlling the ball:

ball_pos # The precise (float) position
ball_pix # The pixel position
ball_v # The velocity

You could add three more variables to hold the Y values... BUT maybe there's a better way! How about changing your variables to
hold a list or tuple?

For example, the tuple (x, y) would be a nice way to position the ball:

Set position as a tuple (x, y)
ball_pos = (120.0, 120.0)

The X value is ball_pos[0]
The Y value is ball_pos[1]

Then you could make a ball_pix tuple by rounding ball_pos to ints, like so:

ball_pix = (round(ball_pos[0]), round(ball_pos[1]))

Check the 'Trek!

The CodeTrek will guide you to convert those X variables to tuples or lists so you can bounce in 2D!

Run It!

Your ball should be bouncing off ALL FOUR WALLS!

If it's not, stop now and do some troubleshooting.

CodeTrek:

 1 from codex import *
 2 import time
 3
 4 BALL_SZ = 4
 5
 6 def draw_ball():
 7 global ball_pix
 8 pix = (round(ball_pos[0]), round(ball_pos[1]))
 9 if pix != ball_pix:
10 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
11 ball_pix = pix
12 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)

13
14 def serve_ball():

Make pix a tuple.

The comparison operators can compare tuples!

Also, in fill_rect() use ball_pix[0] and ball_pix[1] for the X and Y position.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 179 of 295

15 global ball_pos, ball_v, ball_pix
16 ball_v = [0.2, 0.35]
17 ball_pos = (120.0, 120.0)
18 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))

19
20 def elapsed_ms():
21 """Returns milliseconds elapsed since last called"""
22 global ms
23 now = time.ticks_ms()
24 diff = time.ticks_diff(now, ms)
25 ms = now
26 return diff
27
28 serve_ball()
29
30 ms = time.ticks_ms()
31
32 while True:
33 dt = elapsed_ms()
34
35 # Update ball
36 x, y = ball_pos
37 x = x + ball_v[0] * dt
38 y = y + ??? * dt

39
40 # Check for collision with walls
41 collision = False
42 if x <= 0 or x >= 240 - BALL_SZ:
43 collision = True
44 ball_v[0] = ball_v[0] * -1
45 if y <= 0 or y >= 240 - BALL_SZ:
46 collision = True
47 ball_v[1] = ??? * -1

48
49 if not collision:
50 ball_pos = (x, y)
51 draw_ball()

52

Goals:

Start with the Serve!

This is where your ball control variables are initialized.

Make the velocity ball_v a list so you can update it in-place.
Make ball_pos and ball_pix tuples.

I've provided some nice initialization values: a reasonable speed, and center-of-screen position.

In your loop, update both X and Y position.

Based on the X and Y velocity, naturally!

A few changes to wall collision detection:

Set a bool collision if ball hit a wall.
Modify X bounds-check to reverse ball_v[0]
Add Y bounds-check, reversing ball_v[1]

Finally, set a new ball_pos tuple and call draw_ball() only if
there was no collision.

Otherwise, let the ball_v change take effect first. You don't want to draw the
ball if it's out of bounds.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 180 of 295

Update serve_ball() to use a list for ball_v and tuples for ball_pos and ball_pix.

Update draw_ball() to use tuples for ball_pos and ball_pix.

Inside your loop, use ball_v[0] and ball_v[1] to update both X and Y components of ball_pos

Change wall collision to check X and Y bounds.

Also set collision bool if a wall was hit.

Set a new ball_pos tuple and draw the ball IF there wasn't a collision.

Tools Found: Variables, list, tuple, int, bool, Comparison Operators

Solution:

 1 from codex import *
 2 import time
 3
 4 BALL_SZ = 4
 5
 6 def draw_ball():
 7 global ball_pix
 8 pix = (round(ball_pos[0]), round(ball_pos[1]))
 9 if pix != ball_pix:
10 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
11 ball_pix = pix
12 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
13
14 def serve_ball():
15 global ball_pos, ball_v, ball_pix
16 ball_v = [0.1, 0.15]
17 # ball_v = [0.2, 0.35]
18 ball_pos = (120.0, 120.0)
19 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
20
21 def elapsed_ms():
22 """Returns milliseconds elapsed since last called"""
23 global ms
24 now = time.ticks_ms()
25 diff = time.ticks_diff(now, ms)
26 ms = now
27 return diff
28
29 serve_ball()
30
31 ms = time.ticks_ms()
32
33 while True:
34 dt = elapsed_ms()
35
36 # Update ball
37 x, y = ball_pos
38 x = x + ball_v[0] * dt
39 y = y + ball_v[1] * dt
40
41 # Check for collision with walls
42 collision = False
43 if x <= 0 or x >= 240 - BALL_SZ:
44 collision = True
45 ball_v[0] = ball_v[0] * -1
46 if y <= 0 or y >= 240 - BALL_SZ:
47 collision = True
48 ball_v[1] = ball_v[1] * -1
49
50 if not collision:
51 ball_pos = (x, y)
52 draw_ball()
53

Objective 5 - Layout

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 181 of 295

Screen Layout
Your ball physics are working great. But Handball is not played on an empty black screen!

It's time to decorate the screen with walls.
And you need a place to show the SCORE and LIVES remaining during the game.

The Plan
The picture above shows where you're headed with the screen layout.

The SCORE and LIVES will be displayed at the top.
Draw 1-pixel wide walls down both sides, and across the top at y = TOP_WALL.

Check the 'Trek!

The CodeTrek outlines a draw_screen_layout() function that matches the picture.

Try just adding that, and watch your wrecking ball bounce right through the layout drawing!

Have Fun!

You may need to experiment a bit to figure out the proper bounds for wall collisions.

Be sure your ball is bouncing around between the walls!

CodeTrek:

 1 from codex import *
 2 import time
 3
 4 # Screen layout
 5 TOP_WALL = 20
 6 BALL_SZ = 4

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 182 of 295

 7
 8 def draw_ball():
 9 global ball_pix
10 pix = (round(ball_pos[0]), round(ball_pos[1]))
11 if pix != ball_pix:
12 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
13 ball_pix = pix
14 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
15
16 def serve_ball():
17 global ball_pos, ball_v, ball_pix
18 ball_v = [0.2, 0.35]
19 ball_pos = (120.0, 120.0)
20 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
21
22 def elapsed_ms():
23 """Returns milliseconds elapsed since last called"""
24 global ms
25 now = time.ticks_ms()
26 diff = time.ticks_diff(now, ms)
27 ms = now
28 return diff
29
30 def draw_screen_layout():
31 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
32 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
33 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
34 display.draw_text("SCORE", 4, 0, BLUE, 1)
35 display.draw_text("LIVES", 150, 0, BLUE, 1)

36
37 draw_screen_layout()

38 serve_ball()
39
40 ms = time.ticks_ms()
41
42 while True:
43 dt = elapsed_ms()
44
45 # Update ball
46 x, y = ball_pos
47 x = x + ball_v[0] * dt
48 y = y + ball_v[1] * dt
49
50 # Check for collision with walls
51 collision = False
52 if x <= ?? or x >= ?? - BALL_SZ:
53 collision = True
54 ball_v[0] = ball_v[0] * -1
55 if y <= ?? or y >= ?? - BALL_SZ:
56 collision = True
57 ball_v[1] = ball_v[1] * -1

Add layout constants.

This layout puts the score at the TOP.
So you need to move the top ball-boundary down

A new constant TOP_WALL will do the trick.

Add a function to draw the screen layout.

The left and right edges are at x = 0 and x = 239
The "SCORE" and "LIVES" labels are positioned in the TOP area.

I know, there are some magic numbers in here.
I'm compromising to keep the code brief, for your sake!

Don't forget to call the new draw_screen_layout() function once, at the beginning of time.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 183 of 295

58
59 if not collision:
60 ball_pos = (x, y)
61 draw_ball()
62

Goals:

Add the TOP_WALL constant y-pixel location.

Define a def draw_screen_layout() function that draws 3 walls and 2 text labels.

Call your draw_screen_layout() function before your main loop starts.

Update your wall-collision boundaries.

Don't let the ball wreck your walls!

Be sure to use TOP_WALL somewhere in your calculations.

Tools Found: Constants, Loops, Functions

Solution:

 1 from codex import *
 2 import time
 3
 4 # Screen layout
 5 TOP_WALL = 20
 6 BALL_SZ = 4
 7
 8 def draw_ball():
 9 global ball_pix
10 pix = (round(ball_pos[0]), round(ball_pos[1]))
11 if pix != ball_pix:
12 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
13 ball_pix = pix
14 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
15
16 def serve_ball():
17 global ball_pos, ball_v, ball_pix
18 ball_v = [0.2, 0.35]
19 ball_pos = (120.0, 120.0)
20 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
21
22 def elapsed_ms():
23 """Returns milliseconds elapsed since last called"""
24 global ms
25 now = time.ticks_ms()
26 diff = time.ticks_diff(now, ms)
27 ms = now
28 return diff
29
30 def draw_screen_layout():
31 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
32 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
33 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
34 display.draw_text("SCORE", 4, 0, BLUE, 1)
35 display.draw_text("LIVES", 150, 0, BLUE, 1)
36
37 draw_screen_layout()
38 serve_ball()
39
40 ms = time.ticks_ms()
41

Update Your Boundaries!

Are 0 and 240 still your X limits? Seems like you need to scoot them in 1 pixel.
Are 0 and 240 still your Y limits? Hmmm... I heard TOP_WALL + 1 is the new 0 in Y-town :-)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 184 of 295

42 while True:
43 dt = elapsed_ms()
44
45 # Update ball
46 x, y = ball_pos
47 x = x + ball_v[0] * dt
48 y = y + ball_v[1] * dt
49
50 # Check for collision with walls
51 collision = False
52 if x <= 1 or x >= 239 - BALL_SZ:
53 collision = True
54 ball_v[0] = ball_v[0] * -1
55 if y <= TOP_WALL + 1 or y >= 239 - BALL_SZ:
56 collision = True
57 ball_v[1] = ball_v[1] * -1
58
59 if not collision:
60 ball_pos = (x, y)
61 draw_ball()
62

Objective 6 - Sound FX

Sound Effects!
It's time to add retro arcade beeps to your bounces.

You already know how to use soundlib to create tones.
For Handball, just some short beeps is what you're after.

Non-Blocking Beeps!?

A cool feature of soundlib tones is they're non-blocking.

You'll recall, that means your code can start a tone and then continue running code while it plays!
That's awesome! After all, you still need to move the ball and check for player input while sound is playing.

But how do you play a short beep? How about:

A short beep!
tone.play()
sleep_ms(50) # Yikes! BLOCKING!
tone.stop()

No. That's not the way!

Yes, it's a short beep. BUT it totally stops your program for 50 whole milliseconds!

Check the 'Trek!

The CodeTrek will show you a much better way. It still uses tone.play() and tone.stop(), but the timing of the beep is done
using milliseconds dt in the game loop.

No time is wasted!

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8
 9 # Sounds
10 tone = soundmaker.get_tone('trumpet')

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 185 of 295

11 SIDES_TONE = 392
12 TOP_TONE = 494

13 sound_cut = 0 # ms until sound effect stops

14
15 def draw_ball():
16 global ball_pix
17 pix = (round(ball_pos[0]), round(ball_pos[1]))
18 if pix != ball_pix:
19 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
20 ball_pix = pix
21 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
22
23 def serve_ball():
24 global ball_pos, ball_v, ball_pix
25 ball_v = [0.2, 0.35]
26 ball_pos = (120.0, 120.0)
27 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
28
29 def elapsed_ms():
30 """Returns milliseconds elapsed since last called"""
31 global ms
32 now = time.ticks_ms()
33 diff = time.ticks_diff(now, ms)
34 ms = now
35 return diff
36
37 def draw_screen_layout():
38 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
39 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
40 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
41 display.draw_text("SCORE", 4, 0, BLUE, 1)
42 display.draw_text("LIVES", 150, 0, BLUE, 1)
43
44 def beep(freq):
45 global sound_cut
46 tone.set_pitch(freq)
47 tone.play()
48 sound_cut = 50 # ms countdown

49
50 draw_screen_layout()
51 serve_ball()
52
53 ms = time.ticks_ms()
54
55 while True:
56 dt = elapsed_ms()
57
58 # Check sound timer

Initialize your sound tone.

Keeping it simple with just a "trumpet tone" for the retro beep sound.
Change the pitch of the beep for different collision types. Define

constants for SIDE and TOP pitches (frequencies in Hertz).

A variable to stop the sound.

You'll check this in the main loop, so you can stop the sound
after a certain number of milliseconds.

Make a beep() function.

Call this with different frequency values depending on what the ball hit.

NOTE: soundlib tones do NOT stop on their own!

That's what sound_cut is for.
Your main loop should stop the sound after sound_cut milliseconds.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 186 of 295

59 if sound_cut > 0:
60 sound_cut = sound_cut - dt
61 if sound_cut <= 0:
62 tone.stop()

63
64 # Update ball
65 x, y = ball_pos
66 x = x + ball_v[0] * dt
67 y = y + ball_v[1] * dt
68
69 # Check for collision with walls
70 collision = False
71 if x <= 1 or x >= 239 - BALL_SZ:
72 collision = True
73 ball_v[0] = ball_v[0] * -1
74 # TODO: beep the "SIDES" tone
75 if y <= TOP_WALL + 1 or y >= 239 - BALL_SZ:
76 collision = True
77 ball_v[1] = ball_v[1] * -1
78 # TODO: beep the "TOP" tone

79
80 if not collision:
81 ball_pos = (x, y)
82 draw_ball()
83

Hints:

Volume Adjust
You may want to reduce the volume of the sound effects. An easy way to do that is shown below: just call tone.set_level() right
after creating the tone.

Sounds
tone = soundmaker.get_tone('trumpet')
tone.set_level(15) # Reduce Volume!

Beeping
Are you beeps sounding right?

Be sure you're using the constant pitches. The values I suggest in the CodeTrek are pretty sweet, but feel free to tune
'em up to your personal preference!

And indenting the beep() call beneath your if statement!

Ex:

if x <= 1 or x >= 239 - BALL_SZ:
 collision = True
 beep(SIDES_TONE)

Goals:

Create a tone variable using soundmaker.get_tone('trumpet).

Don't forget from soundlib import *

Check if a sound is playing: sound_cut > 0.

If so, decrement sound_cut by dt.
And when it gets to zero... CUT THE SOUND!

Now the easy part: Throw in some beep() 's!

Different beep tones for sides and top/bottom will be nice.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 187 of 295

Define a function def beep(freq) that starts playing a tone at the specified frequency.

It will also need to set a global sound_cut timeout value, so the main loop can stop the tone later.

Check the sound timer sound_cut inside your game loop.

Add beeps when the ball collides with side or top walls.

Tools Found: soundlib, Variables, Locals and Globals, Constants, Loops, Functions

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8
 9 # Sounds
10 tone = soundmaker.get_tone('trumpet')
11 sound_cut = 0 # ms until sound effect stops
12 SIDES_TONE = 392
13 TOP_TONE = 494
14
15 def draw_ball():
16 global ball_pix
17 pix = (round(ball_pos[0]), round(ball_pos[1]))
18 if pix != ball_pix:
19 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
20 ball_pix = pix
21 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
22
23 def serve_ball():
24 global ball_pos, ball_v, ball_pix
25 ball_v = [0.2, 0.35]
26 ball_pos = (120.0, 120.0)
27 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
28
29 def elapsed_ms():
30 """Returns milliseconds elapsed since last called"""
31 global ms
32 now = time.ticks_ms()
33 diff = time.ticks_diff(now, ms)
34 ms = now
35 return diff
36
37 def draw_screen_layout():
38 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
39 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
40 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
41 display.draw_text("SCORE", 4, 0, BLUE, 1)
42 display.draw_text("LIVES", 150, 0, BLUE, 1)
43
44 def beep(freq):
45 global sound_cut
46 tone.set_pitch(freq)
47 tone.play()
48 sound_cut = 50 # ms countdown
49
50 draw_screen_layout()
51 serve_ball()
52
53 ms = time.ticks_ms()
54
55 while True:
56 dt = elapsed_ms()
57
58 # Check sound timer
59 if sound_cut > 0:
60 sound_cut = sound_cut - dt
61 if sound_cut <= 0:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 188 of 295

62 tone.stop()
63
64 # Update ball
65 x, y = ball_pos
66 x = x + ball_v[0] * dt
67 y = y + ball_v[1] * dt
68
69 # Check for collision with walls
70 collision = False
71 if x <= 1 or x >= 239 - BALL_SZ:
72 collision = True
73 beep(SIDES_TONE)
74 ball_v[0] = ball_v[0] * -1
75 if y <= TOP_WALL + 1 or y >= 239 - BALL_SZ:
76 collision = True
77 beep(TOP_TONE)
78 ball_v[1] = ball_v[1] * -1
79
80 if not collision:
81 ball_pos = (x, y)
82 draw_ball()
83

Objective 7 - Player 1

Player 1 - The Paddle
Your player needs a paddle to hit the ball.

That's too bad.
The Python language has no such concept.

(...might as well just go home then, right?)

Wait, YOU are the developer!

You can implement any concept imaginable with code!

Remember from the Layout Objective, the paddle is a blue rectangle that moves from side to side at the bottom of the screen.
Feel free to click back on that Objective to see the diagram.

Got Skillz?

Before you open the CodeTrek, think about how you would implement the paddle feature based on the knowledge you already have.

Can you draw a filled_rect() near the bottom of the screen?
Do you know how to check for buttons.is_pressed() ?
Can you give the paddle a position and velocity like you did for the ball, and let the buttons control that?

Check the 'Trek!

The paddle is the second animated object in your game. Notice the similarity with the code you've written to control the ball.

Don't just "type-in" the code!
Understand the purpose of each piece of code here.

Run It!

Experience the Interactivity!

Move the paddle back and forth.
Try to go past the edges of the screen...
How does the ball impact the paddle?

CodeTrek:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 189 of 295

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220

 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17
 18 # Paddle state
 19 pad_speed = 0.28 # 280px / 1000ms
 20 pad_pos = 110.0 # Paddle X position
 21 pad_pix = 100

 22
 23 def draw_paddle():
 24 global pad_pix
 25 pix = round(pad_pos)
 26 if pix != pad_pix:
 27 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 28 pad_pix = pix
 29 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)

 30
 31 def draw_ball():
 32 global ball_pix
 33 pix = (round(ball_pos[0]), round(ball_pos[1]))
 34 if pix != ball_pix:
 35 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 36 ball_pix = pix
 37 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 38
 39 def serve_ball():
 40 global ball_pos, ball_v, ball_pix
 41 ball_v = [0.1, -0.15]
 42 ball_pos = (120.0, 120.0)
 43 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 44
 45 def elapsed_ms():
 46 """Returns milliseconds elapsed since last called"""
 47 global ms
 48 now = time.ticks_ms()

Size-Up Your Paddle

It's a rectangle, so you need width and height.
Set the Y-coordinate near the bottom of screen.

Initialize the pad_pos and pad_pix variables
to track the precise X-coordinate position and pixel location on screen.

Just like how you already track the ball.
Define a pad_speed for the paddle velocity when the player presses
a button to move the paddle.
Notice pad_pix is different than pad_pos. Why is that? If they were the
same, what would happen on the initial call to draw_paddle() below?

If the paddle can move all the way across the screen in under a second, is that fast enough?

And you'll need a draw_paddle() function.

Looks very much like draw_ball(), right?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 190 of 295

 49 diff = time.ticks_diff(now, ms)
 50 ms = now
 51 return diff
 52
 53 def draw_screen_layout():
 54 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 55 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 56 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 57 display.draw_text("SCORE", 4, 0, BLUE, 1)
 58 display.draw_text("LIVES", 150, 0, BLUE, 1)
 59
 60 def beep(freq):
 61 global sound_cut
 62 tone.set_pitch(freq)
 63 tone.play()
 64 sound_cut = 50 # ms countdown
 65
 66 def check_buttons():
 67 global pad_v
 68 if buttons.is_pressed(BTN_L):
 69 pad_v = -pad_speed
 70 elif buttons.is_pressed(BTN_B):
 71 pad_v = +pad_speed
 72 else:
 73 pad_v = 0 # Stop

 74
 75
 76 draw_screen_layout()
 77 serve_ball()
 78 draw_paddle()

 79
 80 ms = time.ticks_ms()
 81
 82 while True:
 83 dt = elapsed_ms()
 84 check_buttons()

 85
 86 # Update paddle
 87 if pad_v != 0:
 88 pad_pos = pad_pos + pad_v * dt

 89 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
 90 draw_paddle()

Define a function to check for button presses.

Its job is to update pad_v
Use the "outside edge" buttons of the CodeX to control the paddle.

Initialize the paddle

After this you won't draw it unless it moves!

Check the buttons each time through the game loop!

Update the pad_pos, IF it's moving.

Compare this to how you're updating the ball_pos.
Same physics calculations!

Keep the paddle on-screen.

Using built-in min() and max() functions.
Don't let pad_pos get smaller than 1 or bigger than (238 - PADDLE_W).

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 191 of 295

 91
 92 # Check sound timer
 93 if sound_cut > 0:
 94 sound_cut = sound_cut - dt
 95 if sound_cut <= 0:
 96 tone.stop()
 97
 98 # Update ball
 99 x, y = ball_pos
100 x = x + ball_v[0] * dt
101 y = y + ball_v[1] * dt
102
103 # Check for collision with walls
104 collision = False
105 if x <= 1 or x >= 239 - BALL_SZ:
106 collision = True
107 beep(SIDES_TONE)
108 ball_v[0] = ball_v[0] * -1
109 if y <= TOP_WALL + 1 or y >= 239 - BALL_SZ:
110 collision = True
111 beep(TOP_TONE)
112 ball_v[1] = ball_v[1] * -1
113
114 if not collision:
115 ball_pos = (x, y)
116 draw_ball()
117
118

Goals:

Add constants for paddle width, height, and Y-position.

Name them PADDLE_W, PADDLE_H, and PADDLE_Y.

Define a def draw_paddle() function.

Erase the old paddle rectangle, and fill-in the new position!

Make sure to update your new global pad_pix variable.

Define a def check_buttons() function.

This should update your global pad_v paddle velocity.

Call this function each time through your game loop.

Update the pad_pos inside your game loop.

Use the min() and max() built-ins to keep the paddle on-screen.

Call draw_paddle() after the pad_pos is changed.

Tools Found: Constants, Locals and Globals, Built-In Functions, Variables

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 192 of 295

 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17
 18 # Paddle state
 19 pad_speed = 0.28 # 280px / 1000ms
 20 pad_pos = 110.0 # Paddle X position
 21 pad_pix = 100
 22
 23 def draw_paddle():
 24 global pad_pix
 25 pix = round(pad_pos)
 26 if pix != pad_pix:
 27 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 28 pad_pix = pix
 29 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 30
 31 def draw_ball():
 32 global ball_pix
 33 pix = (round(ball_pos[0]), round(ball_pos[1]))
 34 if pix != ball_pix:
 35 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 36 ball_pix = pix
 37 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 38
 39 def serve_ball():
 40 global ball_pos, ball_v, ball_pix
 41 ball_v = [0.1, -0.15]
 42 ball_pos = (120.0, 120.0)
 43 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 44
 45 def elapsed_ms():
 46 """Returns milliseconds elapsed since last called"""
 47 global ms
 48 now = time.ticks_ms()
 49 diff = time.ticks_diff(now, ms)
 50 ms = now
 51 return diff
 52
 53 def draw_screen_layout():
 54 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 55 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 56 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 57 display.draw_text("SCORE", 4, 0, BLUE, 1)
 58 display.draw_text("LIVES", 150, 0, BLUE, 1)
 59
 60 def beep(freq):
 61 global sound_cut
 62 tone.set_pitch(freq)
 63 tone.play()
 64 sound_cut = 50 # ms countdown
 65
 66 def check_buttons():
 67 global pad_v
 68 if buttons.is_pressed(BTN_L):
 69 pad_v = -pad_speed
 70 elif buttons.is_pressed(BTN_B):
 71 pad_v = +pad_speed
 72 else:
 73 pad_v = 0 # Stop
 74
 75
 76 draw_screen_layout()
 77 serve_ball()
 78 draw_paddle()
 79
 80 ms = time.ticks_ms()
 81
 82 while True:
 83 dt = elapsed_ms()
 84 check_buttons()
 85
 86 # Update paddle
 87 if pad_v != 0:
 88 pad_pos = pad_pos + pad_v * dt
 89 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 193 of 295

 90 draw_paddle()
 91
 92 # Check sound timer
 93 if sound_cut > 0:
 94 sound_cut = sound_cut - dt
 95 if sound_cut <= 0:
 96 tone.stop()
 97
 98 # Update ball
 99 x, y = ball_pos
100 x = x + ball_v[0] * dt
101 y = y + ball_v[1] * dt
102
103 # Check for collision with walls
104 collision = False
105 if x <= 1 or x >= 239 - BALL_SZ:
106 collision = True
107 beep(SIDES_TONE)
108 ball_v[0] = ball_v[0] * -1
109 if y <= TOP_WALL + 1 or y >= 239 - BALL_SZ:
110 collision = True
111 beep(TOP_TONE)
112 ball_v[1] = ball_v[1] * -1
113
114 if not collision:
115 ball_pos = (x, y)
116 draw_ball()
117
118

Quiz 3 - Midway!

Question 1: Which three of the following comparisons are True ?

 (1, 2, 3) == (1, 2, 3)

 (1, 2, 3) == (3, 2, 1)

 ("Right", "On") == ("Right", "On")

 10 > 9

 1 < 0

 "one" == 1

Question 2: What's the purpose of the sound_cut variable in your Handball program?

 To count down the milliseconds till you turn off the sound.

 It is the cut-off frequency of the sound.

 To count up seconds until sound stops.

Question 3: What is max(min(3, 2), 1)

 2

 1

 3

 4

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 194 of 295

Objective 8 - Contact

Stop Trying to Hit Me
...and HIT me!

Enough with the "ghost paddle". It's time to put some swat in this thing!

Checking for Collisions

How do you know if the ball has hit the paddle? First check the Y-coordinate. Check the picture below.

Remember, y is the ball's Y-position at the upper left corner.

Imagine the ball traveling down toward the paddle. Y is increasing.

It hits the paddle when y + BALL_SZ == PADDLE_Y
And passes below it when y == PADDLE_Y + PADDLE_H

You can check if there is a potential collision based on the Y-coordinate with a single if statement:

if (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):

Now Check X

Okay, lets say the ball's Y-coordinate is in the "paddle zone". What X-coordinates would indicate a collision? Track the ball's X
position relative to the paddle with a new variable, pad_ball.

Hitting the paddle's left corner, pad_ball = 0
Hitting the right corner, pad_ball = PADDLE_W + BALL_SZ

Left side paddle hit:

Right side paddle hit:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 195 of 295

Based on the above diagrams, you can calculate pad_ball and check for an X-coordinate hit event with the following code:

pad_ball = x + BALL_SZ - pad_pos
hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)

Check the 'Trek!

Now get to it. Just a couple of if statements are all that stand between you and a solid paddle that can stand up to any ball!

Run It!

Your ball should now bounce off the paddle!

It still bounces off the "floor" also... gotta fix that in the next Objective!

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17 PADDLE_TONE = 587
 18
 19 # Paddle state
 20 pad_speed = 0.28 # 280px / 1000ms
 21 pad_pos = 110.0 # Paddle X position
 22 pad_pix = 100
 23
 24 def draw_paddle():
 25 global pad_pix
 26 pix = round(pad_pos)
 27 if pix != pad_pix:
 28 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 29 pad_pix = pix
 30 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 31
 32 def draw_ball():
 33 global ball_pix
 34 pix = (round(ball_pos[0]), round(ball_pos[1]))
 35 if pix != ball_pix:
 36 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 37 ball_pix = pix
 38 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 196 of 295

 39
 40 def serve_ball():
 41 global ball_pos, ball_v, ball_pix
 42 ball_v = [0.1, -0.15]
 43 ball_pos = (120.0, 120.0)
 44 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 45
 46 def elapsed_ms():
 47 """Returns milliseconds elapsed since last called"""
 48 global ms
 49 now = time.ticks_ms()
 50 diff = time.ticks_diff(now, ms)
 51 ms = now
 52 return diff
 53
 54 def draw_screen_layout():
 55 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 56 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 57 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 58 display.draw_text("SCORE", 4, 0, BLUE, 1)
 59 display.draw_text("LIVES", 150, 0, BLUE, 1)
 60
 61 def beep(freq):
 62 global sound_cut
 63 tone.set_pitch(freq)
 64 tone.play()
 65 sound_cut = 50 # ms countdown
 66
 67 def check_buttons():
 68 global pad_v
 69 if buttons.is_pressed(BTN_L):
 70 pad_v = -pad_speed
 71 elif buttons.is_pressed(BTN_B):
 72 pad_v = +pad_speed
 73 else:
 74 pad_v = 0 # Stop
 75
 76
 77 draw_screen_layout()
 78 serve_ball()
 79 draw_paddle()
 80
 81 ms = time.ticks_ms()
 82
 83 while True:
 84 dt = elapsed_ms()
 85 check_buttons()
 86
 87 # Update paddle
 88 if pad_v:
 89 pad_pos = pad_pos + pad_v * dt
 90 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
 91 draw_paddle()
 92
 93 # Check sound timer
 94 if sound_cut > 0:
 95 sound_cut = sound_cut - dt
 96 if sound_cut <= 0:
 97 tone.stop()
 98
 99 # Update ball
100 x, y = ball_pos
101 x = x + ball_v[0] * dt
102 y = y + ball_v[1] * dt
103
104 # Check for collision with walls
105 collision = False
106 if x <= 1 or x >= 239 - BALL_SZ:
107 collision = True
108 beep(SIDES_TONE)
109 ball_v[0] = ball_v[0] * -1
110 if y <= TOP_WALL + 1 or y >= 239 - BALL_SZ:
111 collision = True
112 beep(TOP_TONE)
113 ball_v[1] = ball_v[1] * -1

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 197 of 295

114
115 # Check for collision with paddle
116 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):

117 # Calculate ball position relative to paddle
118 pad_ball = x + BALL_SZ - pad_pos
119 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
120 if hit:

121 ball_v[1] = ball_v[1] * -1 # bounce

122 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
123 beep(PADDLE_TONE)
124 collision = True

125
126 # Draw ball
127 if not collision:
128 ball_pos = (x, y)
129 draw_ball()
130

Goals:

In your game loop add an if statement that checks if the ball is in the Y range of the paddle.

It must use y, PADDLE_Y, PADDLE_H, and BALL_SZ constants to test this condition.

Create a variable named pad_ball that tracks the ball's X position relative to the paddle.

Use pad_ball and another if condition to complete your check for collision!

Tools Found: Variables, Constants, bool, Branching

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *

Paddle Collision Detection

Check for paddle hit right after you check for wall collisions.
Don't bother checking the paddle if it already hit a wall.

Check if the ball's Y coordinate is in the paddle zone.

Now check the X coordinate

Calculate pad_ball, the ball's position relative to the paddle.
Is any part of the ball in contact with the paddle?

Bounce off the paddle!

Keep the same X velocity, just bounce the Y.
Remember, multiply by -1 to flip the sign and thus the direction of the ball!

Keep it Solid!

A fast-moving ball might go a few pixels "beneath the surface" of the paddle.
Keep that from happening by bumping ball_pos up to 1 pixel above the paddle.
Remember, above means lower Y value, so subtract those Y pixels!

Don't forget to beep() and flag this as a collision!

Wait, did you define a PADDLE_TONE constant, right?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 198 of 295

 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17 PADDLE_TONE = 587
 18
 19 # Paddle state
 20 pad_speed = 0.28 # 280px / 1000ms
 21 pad_pos = 110.0 # Paddle X position
 22 pad_pix = 100
 23
 24 def draw_paddle():
 25 global pad_pix
 26 pix = round(pad_pos)
 27 if pix != pad_pix:
 28 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 29 pad_pix = pix
 30 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 31
 32 def draw_ball():
 33 global ball_pix
 34 pix = (round(ball_pos[0]), round(ball_pos[1]))
 35 if pix != ball_pix:
 36 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 37 ball_pix = pix
 38 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 39
 40 def serve_ball():
 41 global ball_pos, ball_v, ball_pix
 42 ball_v = [0.1, -0.15]
 43 ball_pos = (120.0, 120.0)
 44 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 45
 46 def elapsed_ms():
 47 """Returns milliseconds elapsed since last called"""
 48 global ms
 49 now = time.ticks_ms()
 50 diff = time.ticks_diff(now, ms)
 51 ms = now
 52 return diff
 53
 54 def draw_screen_layout():
 55 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 56 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 57 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 58 display.draw_text("SCORE", 4, 0, BLUE, 1)
 59 display.draw_text("LIVES", 150, 0, BLUE, 1)
 60
 61 def beep(freq):
 62 global sound_cut
 63 tone.set_pitch(freq)
 64 # tone.play()
 65 sound_cut = 50 # ms countdown
 66
 67 def check_buttons():
 68 global pad_v
 69 if buttons.is_pressed(BTN_L):
 70 pad_v = -pad_speed
 71 elif buttons.is_pressed(BTN_B):
 72 pad_v = +pad_speed
 73 else:
 74 pad_v = 0 # Stop
 75
 76
 77 draw_screen_layout()
 78 serve_ball()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 199 of 295

 79 draw_paddle()
 80
 81 ms = time.ticks_ms()
 82
 83 while True:
 84 dt = elapsed_ms()
 85 check_buttons()
 86
 87 # Update paddle
 88 if pad_v:
 89 pad_pos = pad_pos + pad_v * dt
 90 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
 91 draw_paddle()
 92
 93 # Check sound timer
 94 if sound_cut > 0:
 95 sound_cut = sound_cut - dt
 96 if sound_cut <= 0:
 97 tone.stop()
 98
 99 # Update ball
100 x, y = ball_pos
101 x = x + ball_v[0] * dt
102 y = y + ball_v[1] * dt
103
104 # Check for collision with walls
105 collision = False
106 if x <= 1 or x >= 239 - BALL_SZ:
107 collision = True
108 beep(SIDES_TONE)
109 ball_v[0] = ball_v[0] * -1
110 if y <= TOP_WALL + 1 or y >= 239 - BALL_SZ:
111 collision = True
112 beep(TOP_TONE)
113 ball_v[1] = ball_v[1] * -1
114
115 # Check for collision with paddle
116 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
117 # Calculate ball position relative to paddle
118 pad_ball = x + BALL_SZ - pad_pos
119 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
120 if hit:
121 ball_v[1] = ball_v[1] * -1 # bounce
122 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
123 beep(PADDLE_TONE)
124 collision = True
125
126 # Draw ball
127 if not collision:
128 ball_pos = (x, y)
129 draw_ball()
130

Objective 9 - Missed

Swing and a Miss!
Is it really a game if you can't lose?

Change your game so when the player fails to hit the ball, it zooms off the bottom of the screen.

After that, your game should wait a few seconds and serve another ball!

Check the 'Trek!

You'll need to change your wall collision code to not bounce on the bottom of the screen y >= 239 - BALL_SZ.

Instead you'll let it go... BUT when it's past the bottom y > 240 you'll need to set up for serving a new ball a few seconds
later.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 200 of 295

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17 PADDLE_TONE = 587
 18
 19 # Paddle state
 20 pad_speed = 0.28 # 280px / 1000ms
 21 pad_pos = 110.0 # Paddle X position
 22 pad_pix = 100
 23
 24 def draw_paddle():
 25 global pad_pix
 26 pix = round(pad_pos)
 27 if pix != pad_pix:
 28 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 29 pad_pix = pix
 30 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 31
 32 def draw_ball():
 33 global ball_pix
 34 pix = (round(ball_pos[0]), round(ball_pos[1]))
 35 if pix != ball_pix:
 36 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 37 ball_pix = pix
 38 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 39
 40 def serve_ball():
 41 global ball_pos, ball_v, ball_pix
 42 ball_v = [0.1, -0.15]
 43 ball_pos = (120.0, 120.0)
 44 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 45
 46 def elapsed_ms():
 47 """Returns milliseconds elapsed since last called"""
 48 global ms
 49 now = time.ticks_ms()
 50 diff = time.ticks_diff(now, ms)
 51 ms = now
 52 return diff
 53
 54 def draw_screen_layout():
 55 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 56 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 57 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 58 display.draw_text("SCORE", 4, 0, BLUE, 1)
 59 display.draw_text("LIVES", 150, 0, BLUE, 1)
 60
 61 def beep(freq):
 62 global sound_cut
 63 tone.set_pitch(freq)
 64 tone.play()
 65 sound_cut = 50 # ms countdown
 66
 67 def check_buttons():
 68 global pad_v
 69 if buttons.is_pressed(BTN_L):
 70 pad_v = -pad_speed
 71 elif buttons.is_pressed(BTN_B):
 72 pad_v = +pad_speed

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 201 of 295

 73 else:
 74 pad_v = 0 # Stop
 75
 76 def new_ball():
 77 global serve_timer
 78 serve_timer = 2000

 79
 80 draw_screen_layout()
 81 new_ball()
 82 draw_paddle()

 83
 84 ms = time.ticks_ms()
 85
 86 while True:
 87 dt = elapsed_ms()
 88 check_buttons()
 89
 90 # Update paddle
 91 if pad_v:
 92 pad_pos = pad_pos + pad_v * dt
 93 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
 94 draw_paddle()
 95
 96 # Check sound timer
 97 if sound_cut > 0:
 98 sound_cut = sound_cut - dt
 99 if sound_cut <= 0:
100 tone.stop()
101
102 # Check serve timer
103 if serve_timer > 0:
104 serve_timer = serve_timer - dt
105 if serve_timer <= 0:
106 serve_ball()

107 else:
108 continue

109
110 # Update ball
111 x, y = ball_pos
112 x = x + ball_v[0] * dt
113 y = y + ball_v[1] * dt
114
115 # Check for collision with walls
116 collision = False
117 if x <= 1 or x >= 239 - BALL_SZ:
118 collision = True
119 beep(SIDES_TONE)
120 ball_v[0] = ball_v[0] * -1

Define the def new_ball() function.

Use a global countdown timer, similar to the sound_cut you used to time the beeps.

This serve_timer will be checked inside your game loop.

Replace the initial serve with your new new_ball()

Add a serve_timer check in your game loop.

This looks almost exactly like the sound timer check above, eh?

Skip the rest of the game loop if you're waiting on a serve.

The continue statement jumps back to the top of the loop.
Like the break statement, it can only be used inside of a loop!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 202 of 295

121 if y <= TOP_WALL + 1:
122 collision = True

123 beep(TOP_TONE)
124 ball_v[1] = ball_v[1] * -1
125 # TODO: otherwise it's a miss! ...get new ball.

126
127 # Check for collision with paddle
128 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
129 # Calculate ball position relative to paddle
130 pad_ball = x + BALL_SZ - pad_pos
131 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
132 if hit:
133 ball_v[1] = ball_v[1] * -1 # bounce
134 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
135 beep(PADDLE_TONE)
136 collision = True
137
138 # Draw ball
139 if not collision:
140 ball_pos = (x, y)
141 draw_ball()
142

Hint:

The continue statement serves a couple of purposes here:

1. It prevents the ball from continuing to "bounce off the imaginary walls" after it leaves the screen.
2. Before the first serve, it prevents running code that depends on the initialization from serve_ball().

Goals:

Modify your Y wall collision code to let the ball go off the bottom.

Add an elif statement to set up a new_ball when the ball goes off-screen.

Define a function def new_ball() that sets a global serve_timer countdown in milliseconds.

Replace your initial call to serve_ball() with a call to your new new_ball() function.

Add a serve timer check in your game loop.

It should check serve_timer, decrement it if needed, and call serve_ball().

Use the continue statement to skip the rest of your game loop while waiting to serve.

Tools Found: Break and Continue, Branching, Functions, Locals and Globals, Loops

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20

Modify your Y wall check to remove the bottom wall.

Add an elif branch here.

You need to call a function new_ball() when the ball
goes off the bottom of the screen.
That means when y > 240...

Next step is to actually define the new_ball() function!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 203 of 295

 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17 PADDLE_TONE = 587
 18
 19 # Paddle state
 20 pad_speed = 0.28 # 280px / 1000ms
 21 pad_pos = 110.0 # Paddle X position
 22 pad_pix = 100
 23
 24
 25 def draw_paddle():
 26 global pad_pix
 27 pix = round(pad_pos)
 28 if pix != pad_pix:
 29 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 30 pad_pix = pix
 31 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 32
 33 def draw_ball():
 34 global ball_pix
 35 pix = (round(ball_pos[0]), round(ball_pos[1]))
 36 if pix != ball_pix:
 37 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 38 ball_pix = pix
 39 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 40
 41 def serve_ball():
 42 global ball_pos, ball_v, ball_pix
 43 ball_v = [0.1, -0.15]
 44 ball_pos = (120.0, 120.0)
 45 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 46
 47 def elapsed_ms():
 48 """Returns milliseconds elapsed since last called"""
 49 global ms
 50 now = time.ticks_ms()
 51 diff = time.ticks_diff(now, ms)
 52 ms = now
 53 return diff
 54
 55 def draw_screen_layout():
 56 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 57 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 58 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 59 display.draw_text("SCORE", 4, 0, BLUE, 1)
 60 display.draw_text("LIVES", 150, 0, BLUE, 1)
 61
 62 def beep(freq):
 63 global sound_cut
 64 tone.set_pitch(freq)
 65 tone.play()
 66 sound_cut = 50 # ms countdown
 67
 68 def check_buttons():
 69 global pad_v
 70 if buttons.is_pressed(BTN_L):
 71 pad_v = -pad_speed
 72 elif buttons.is_pressed(BTN_B):
 73 pad_v = +pad_speed
 74 else:
 75 pad_v = 0 # Stop
 76
 77 def new_ball():
 78 global serve_timer
 79 serve_timer = 2000
 80
 81 draw_screen_layout()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 204 of 295

 82 new_ball()
 83 draw_paddle()
 84
 85 ms = time.ticks_ms()
 86
 87 while True:
 88 dt = elapsed_ms()
 89 check_buttons()
 90
 91 # Update paddle
 92 if pad_v:
 93 pad_pos = pad_pos + pad_v * dt
 94 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
 95 draw_paddle()
 96
 97 # Check sound timer
 98 if sound_cut > 0:
 99 sound_cut = sound_cut - dt
100 if sound_cut <= 0:
101 tone.stop()
102
103 # Check serve timer
104 if serve_timer > 0:
105 serve_timer = serve_timer - dt
106 if serve_timer <= 0:
107 serve_ball()
108 else:
109 continue
110
111 # Update ball
112 x, y = ball_pos
113 x = x + ball_v[0] * dt
114 y = y + ball_v[1] * dt
115
116 # Check for collision with walls
117 collision = False
118 if x <= 1 or x >= 239 - BALL_SZ:
119 collision = True
120 beep(SIDES_TONE)
121 ball_v[0] = ball_v[0] * -1
122 if y <= TOP_WALL + 1:
123 collision = True
124 beep(TOP_TONE)
125 ball_v[1] = ball_v[1] * -1
126 elif y > 240:
127 new_ball()
128
129 # Check for collision with paddle
130 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
131 # Calculate ball position relative to paddle
132 pad_ball = x + BALL_SZ - pad_pos
133 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
134 if hit:
135 ball_v[1] = ball_v[1] * -1 # bounce
136 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
137 beep(PADDLE_TONE)
138 collision = True
139
140 # Draw ball
141 if not collision:
142 ball_pos = (x, y)
143 draw_ball()
144

Objective 10 - Score

Score!
Who's keeping score?

Nobody at the moment. But I bet you can program the CodeX to do it!

You've made a lovely place at the top of the screen to show the SCORE and the LIVES remaining in the game.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 205 of 295

In this game, LIVES are how many more times a new ball will be served before it's "game over,
dude."
As for SCORE, how about giving the player one point each time they hit the ball with the
paddle?

You can do it! Give your game a real-live scoreboard!

Check the 'Trek!

Watch for # TODOs. Read the code carefully and be sure to follow exactly how the score and
n_lives are tracked.

When this is running properly, you'll have a playable game!

Run It!

Play your game!

Is the SCORE updating when you hit the ball?
How about the LIVES?

If not, it's time to debug and fix it. Next objective you'll be making the game a little more user-friendly!

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17 PADDLE_TONE = 587
 18
 19 # Paddle state
 20 pad_speed = 0.28 # 280px / 1000ms
 21 pad_pos = 110.0 # Paddle X position
 22 pad_pix = 100
 23
 24 # Game state
 25 START_LIVES = 3 # Lives remaining at start of game
 26 score = 0
 27 n_lives = START_LIVES + 1
 28 serve_timer = 2000

 29
 30 def draw_paddle():
 31 global pad_pix
 32 pix = round(pad_pos)
 33 if pix != pad_pix:
 34 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 35 pad_pix = pix

Initialize variables to keep track of the score and number of "lives"
remaining, n_lives.

Add 1 to the initial n_lives value for the first ball.
Every new ball will consume a "life", and the game ends
when n_lives == 0.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 206 of 295

 36 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 37
 38 def draw_ball():
 39 global ball_pix
 40 pix = (round(ball_pos[0]), round(ball_pos[1]))
 41 if pix != ball_pix:
 42 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 43 ball_pix = pix
 44 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 45
 46 def serve_ball():
 47 global ball_pos, ball_v, ball_pix
 48 ball_v = [0.1, -0.15]
 49 ball_pos = (120.0, 120.0)
 50 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 51
 52 def elapsed_ms():
 53 """Returns milliseconds elapsed since last called"""
 54 global ms
 55 now = time.ticks_ms()
 56 diff = time.ticks_diff(now, ms)
 57 ms = now
 58 return diff
 59
 60 def draw_screen_layout():
 61 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 62 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 63 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 64 display.draw_text("SCORE", 4, 0, BLUE, 1)
 65 display.draw_text("LIVES", 150, 0, BLUE, 1)
 66
 67 def beep(freq):
 68 global sound_cut
 69 tone.set_pitch(freq)
 70 tone.play()
 71 sound_cut = 50 # ms countdown
 72
 73 def check_buttons():
 74 global pad_v
 75 if buttons.is_pressed(BTN_L):
 76 pad_v = -pad_speed
 77 elif buttons.is_pressed(BTN_B):
 78 pad_v = +pad_speed
 79 else:
 80 pad_v = 0 # Stop
 81
 82 def new_ball():
 83 global serve_timer # TODO: another global?
 84 # TODO: subtract 1 from n_lives
 85 update_score()
 86 if n_lives > 0:
 87 serve_timer = 2000

 88
 89 def update_score():
 90 display.fill_rect(45, 0, 100, 20, BLACK)
 91 display.draw_text(str(score), 45, 0, WHITE, 2)
 92 display.fill_rect(195, 0, 45, 20, BLACK)
 93 display.draw_text(str(n_lives), 195, 0, WHITE, 2)

Modify your new_ball() function to update n_lives.

You are modifying a global, so add n_lives to the global list!
Take 1 from n_lives each time a new ball is served.
After you change n_lives, call the new function update_score().
Only reset the serve_timer if there are lives remaining.

Define a new function to update the score.

Erase the text area at the top of the screen.
Draw updated values, using str() to convert the ints to strings.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 207 of 295

 94
 95 draw_screen_layout()
 96 new_ball()
 97 draw_paddle()
 98
 99 ms = time.ticks_ms()
100
101 while True:
102 dt = elapsed_ms()
103 check_buttons()
104
105 # Update paddle
106 if pad_v:
107 pad_pos = pad_pos + pad_v * dt
108 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
109 draw_paddle()
110
111 # Check sound timer
112 if sound_cut > 0:
113 sound_cut = sound_cut - dt
114 if sound_cut <= 0:
115 tone.stop()
116
117 # Check serve timer
118 if serve_timer > 0:
119 serve_timer = serve_timer - dt
120 if serve_timer <= 0:
121 serve_ball()
122 else:
123 continue
124
125 if n_lives == 0:
126 continue

127
128 # Update ball
129 x, y = ball_pos
130 x = x + ball_v[0] * dt
131 y = y + ball_v[1] * dt
132
133 # Check for collision with walls
134 collision = False
135 if x <= 1 or 240 > x >= 239 - BALL_SZ:
136 collision = True
137 beep(SIDES_TONE)
138 ball_v[0] = ball_v[0] * -1
139 if y <= TOP_WALL + 1:
140 collision = True
141 beep(TOP_TONE)
142 ball_v[1] = ball_v[1] * -1
143 elif y > 240:
144 new_ball()
145
146 # Check for collision with paddle
147 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
148 # Calculate ball position relative to paddle
149 pad_ball = x + BALL_SZ - pad_pos
150 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
151 if hit:
152 ball_v[1] = ball_v[1] * -1 # bounce
153 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
154 beep(PADDLE_TONE)
155 collision = True
156 score = score + 1
157 update_score()

Skip the rest of the game loop if there are no lives remaining.

This still lets the player move the paddle.
Later you can add the ability to reset for a new serve...

Score a point when you hit a ball!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 208 of 295

158
159 # Draw ball
160 if not collision:
161 ball_pos = (x, y)
162 draw_ball()
163
164

Goals:

Initialize variables called score and n_lives at the beginning of your program where you define the # Game state.

Modify the new_ball() function.

Decrement n_lives

Only reset serve_timer if n_lives > 0

Define an def update_score() function that displays the value of the score and n_lives variables at the top of the screen.

Score a point when the player hits the ball!

Tools Found: Variables, Functions, Locals and Globals, int, str

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17 PADDLE_TONE = 587
 18
 19 # Paddle state
 20 pad_speed = 0.28 # 280px / 1000ms
 21 pad_pos = 110.0 # Paddle X position
 22 pad_pix = 100
 23
 24 # Game state
 25 START_LIVES = 3 # Lives remaining at start of game
 26 score = 0
 27 n_lives = START_LIVES + 1
 28 serve_timer = 2000
 29
 30 def draw_paddle():
 31 global pad_pix
 32 pix = round(pad_pos)
 33 if pix != pad_pix:
 34 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 35 pad_pix = pix
 36 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 37
 38 def draw_ball():
 39 global ball_pix
 40 pix = (round(ball_pos[0]), round(ball_pos[1]))
 41 if pix != ball_pix:
 42 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 43 ball_pix = pix
 44 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 209 of 295

 45
 46 def serve_ball():
 47 global ball_pos, ball_v, ball_pix
 48 ball_v = [0.1, -0.15]
 49 ball_pos = (120.0, 120.0)
 50 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 51
 52 def elapsed_ms():
 53 """Returns milliseconds elapsed since last called"""
 54 global ms
 55 now = time.ticks_ms()
 56 diff = time.ticks_diff(now, ms)
 57 ms = now
 58 return diff
 59
 60 def draw_screen_layout():
 61 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 62 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 63 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 64 display.draw_text("SCORE", 4, 0, BLUE, 1)
 65 display.draw_text("LIVES", 150, 0, BLUE, 1)
 66
 67 def beep(freq):
 68 global sound_cut
 69 tone.set_pitch(freq)
 70 tone.play()
 71 sound_cut = 50 # ms countdown
 72
 73 def check_buttons():
 74 global pad_v
 75 if buttons.is_pressed(BTN_L):
 76 pad_v = -pad_speed
 77 elif buttons.is_pressed(BTN_B):
 78 pad_v = +pad_speed
 79 else:
 80 pad_v = 0 # Stop
 81
 82 def new_ball():
 83 global n_lives, serve_timer
 84 n_lives = n_lives - 1
 85 update_score()
 86 if n_lives > 0:
 87 serve_timer = 2000
 88
 89 def update_score():
 90 display.fill_rect(45, 0, 100, 20, BLACK)
 91 display.draw_text(str(score), 45, 0, WHITE, 2)
 92 display.fill_rect(195, 0, 45, 20, BLACK)
 93 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
 94
 95 draw_screen_layout()
 96 new_ball()
 97 draw_paddle()
 98
 99 ms = time.ticks_ms()
100
101 while True:
102 dt = elapsed_ms()
103 check_buttons()
104
105 # Update paddle
106 if pad_v:
107 pad_pos = pad_pos + pad_v * dt
108 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
109 draw_paddle()
110
111 # Check sound timer
112 if sound_cut > 0:
113 sound_cut = sound_cut - dt
114 if sound_cut <= 0:
115 tone.stop()
116
117 # Check serve timer
118 if serve_timer > 0:
119 serve_timer = serve_timer - dt

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 210 of 295

120 if serve_timer <= 0:
121 serve_ball()
122 else:
123 continue
124
125 if n_lives == 0:
126 continue
127
128 # Update ball
129 x, y = ball_pos
130 x = x + ball_v[0] * dt
131 y = y + ball_v[1] * dt
132
133 # Check for collision with walls
134 collision = False
135 if x <= 1 or 240 > x >= 239 - BALL_SZ:
136 collision = True
137 beep(SIDES_TONE)
138 ball_v[0] = ball_v[0] * -1
139 if y <= TOP_WALL + 1:
140 collision = True
141 beep(TOP_TONE)
142 ball_v[1] = ball_v[1] * -1
143 elif y > 240:
144 new_ball()
145
146 # Check for collision with paddle
147 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
148 # Calculate ball position relative to paddle
149 pad_ball = x + BALL_SZ - pad_pos
150 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
151 if hit:
152 ball_v[1] = ball_v[1] * -1 # bounce
153 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
154 beep(PADDLE_TONE)
155 collision = True
156 score = score + 1
157 update_score()
158
159 # Draw ball
160 if not collision:
161 ball_pos = (x, y)
162 draw_ball()
163
164

Objective 11 - Messages

UX
It's time to focus on your game's UX (User Experience).

Add friendly messages to inform the player about what's happening.
Give the user a "Play Again" button.

Check the 'Trek!

You'll be defining functions to display/clear a message near the center of the screen.

Also you will add a check for Button U to Play Again.

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 211 of 295

 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17 PADDLE_TONE = 587
 18
 19 # Paddle state
 20 pad_speed = 0.28 # 280px / 1000ms
 21 pad_pos = 110.0 # Paddle X position
 22 pad_pix = 100
 23
 24 # Game state
 25 START_LIVES = 3 # Lives remaining at start of game
 26 score = 0
 27 n_lives = START_LIVES + 1
 28 serve_timer = 2000
 29
 30 def draw_paddle():
 31 global pad_pix
 32 pix = round(pad_pos)
 33 if pix != pad_pix:
 34 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 35 pad_pix = pix
 36 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 37
 38 def draw_ball():
 39 global ball_pix
 40 pix = (round(ball_pos[0]), round(ball_pos[1]))
 41 if pix != ball_pix:
 42 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 43 ball_pix = pix
 44 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 45
 46 def serve_ball():
 47 global ball_pos, ball_v, ball_pix
 48 ball_v = [0.1, -0.15]
 49 ball_pos = (120.0, 120.0)
 50 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 51 clear_message()

 52
 53 def elapsed_ms():
 54 """Returns milliseconds elapsed since last called"""
 55 global ms
 56 now = time.ticks_ms()
 57 diff = time.ticks_diff(now, ms)
 58 ms = now
 59 return diff
 60
 61 def draw_screen_layout():
 62 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 63 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 64 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 65 display.draw_text("SCORE", 4, 0, BLUE, 1)
 66 display.draw_text("LIVES", 150, 0, BLUE, 1)
 67
 68 def beep(freq):
 69 global sound_cut
 70 tone.set_pitch(freq)
 71 tone.play()
 72 sound_cut = 50 # ms countdown
 73
 74 def check_buttons():
 75 global pad_v, n_lives, score

Okay NOW you see why the clear_message() function was separate from show_message().

The message stays up until the serve happens.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 212 of 295

 76
 77 if buttons.is_pressed(BTN_L):
 78 pad_v = -pad_speed
 79 elif buttons.is_pressed(BTN_B):
 80 pad_v = +pad_speed
 81 else:
 82 pad_v = 0 # Stop
 83
 84 if n_lives == 0 and buttons.is_pressed(BTN_U):
 85 n_lives = START_LIVES + 1
 86 score = 0

 87
 88 def new_ball():
 89 global n_lives, serve_timer
 90 n_lives = n_lives - 1
 91 update_score()
 92 if n_lives > 0:
 93 serve_timer = 2000
 94 show_message("Serving...", "Get Ready!", GREEN)
 95 else:
 96 show_message("Game Over!", "U = play again", RED)

 97
 98 def update_score():
 99 display.fill_rect(45, 0, 100, 20, BLACK)
100 display.draw_text(str(score), 45, 0, WHITE, 2)
101 display.fill_rect(195, 0, 45, 20, BLACK)
102 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
103
104 def clear_message():
105 display.fill_rect(1, 120, 238, 80, BLACK)
106
107 def show_message(banner, note, color):
108 clear_message()
109 display.draw_text(banner, 30, 120, color, 3)
110 display.draw_text(note, 30, 160, WHITE, 2)

111
112 draw_screen_layout()
113 new_ball()
114 draw_paddle()
115
116 ms = time.ticks_ms()
117
118 while True:
119 dt = elapsed_ms()
120 check_buttons()
121

Add the "Play Again" feature to your check_buttons() function.

You only want to allow this when n_lives == 0.
Reset both n_lives and score globals for a new game!

Add some friendly messages!

You're about to get served!
...and Game Ovah!

Define two new functions:

1. A function to put a text message in the middle of the screen:

show_message(
 banner, # Short message title
 note, # Long message subtitle
 color # Color of the banner
)

2. clear_message() to erase the message. (scroll up to see)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 213 of 295

122 # Update paddle
123 if pad_v:
124 pad_pos = pad_pos + pad_v * dt
125 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
126 draw_paddle()
127
128 # Check sound timer
129 if sound_cut > 0:
130 sound_cut = sound_cut - dt
131 if sound_cut <= 0:
132 tone.stop()
133
134 # Check serve timer
135 if serve_timer > 0:
136 serve_timer = serve_timer - dt
137 if serve_timer <= 0:
138 serve_ball()
139 else:
140 continue
141
142 if n_lives == 0:
143 continue
144
145 # Update ball
146 x, y = ball_pos
147 x = x + ball_v[0] * dt
148 y = y + ball_v[1] * dt
149
150 # Check for collision with walls
151 collision = False
152 if x <= 1 or 240 > x >= 239 - BALL_SZ:
153 collision = True
154 beep(SIDES_TONE)
155 ball_v[0] = ball_v[0] * -1
156 if y <= TOP_WALL + 1:
157 collision = True
158 beep(TOP_TONE)
159 ball_v[1] = ball_v[1] * -1
160 elif y > 240:
161 new_ball()
162
163 # Check for collision with paddle
164 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
165 # Calculate ball position relative to paddle
166 pad_ball = x + BALL_SZ - pad_pos
167 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
168 if hit:
169 ball_v[1] = ball_v[1] * -1 # bounce
170 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
171 beep(PADDLE_TONE)
172 collision = True
173 score = score + 1
174 update_score()
175
176 # Draw ball
177 if not collision:
178 ball_pos = (x, y)
179 draw_ball()
180
181

Goals:

Define a new function def show_message(banner, note, color) that draws a colorful message in the middle of the screen, with a
small subtitle in WHITE text.

Define a new function def clear_message() that erases the message area used by show_message().

Add calls to show_message() to your new_ball() function.

Check for the "Play Again" button BTN_U in your check_buttons() function.

Reset the global n_lives when it's pressed.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 214 of 295

Call clear_message() from your serve_ball() function.

Tools Found: Functions, Locals and Globals

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4
 5 # Screen layout
 6 TOP_WALL = 20
 7 BALL_SZ = 4
 8 PADDLE_W = 20
 9 PADDLE_H = 8
 10 PADDLE_Y = 220
 11
 12 # Sounds
 13 tone = soundmaker.get_tone('trumpet')
 14 sound_cut = 0 # ms until sound effect stops
 15 SIDES_TONE = 392
 16 TOP_TONE = 494
 17 PADDLE_TONE = 587
 18
 19 # Paddle state
 20 pad_speed = 0.28 # 280px / 1000ms
 21 pad_pos = 110.0 # Paddle X position
 22 pad_pix = 100
 23
 24 # Game state
 25 START_LIVES = 3 # Lives remaining at start of game
 26 score = 0
 27 n_lives = START_LIVES + 1
 28 serve_timer = 2000
 29
 30 def draw_paddle():
 31 global pad_pix
 32 pix = round(pad_pos)
 33 if pix != pad_pix:
 34 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 35 pad_pix = pix
 36 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 37
 38 def draw_ball():
 39 global ball_pix
 40 pix = (round(ball_pos[0]), round(ball_pos[1]))
 41 if pix != ball_pix:
 42 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 43 ball_pix = pix
 44 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 45
 46 def serve_ball():
 47 global ball_pos, ball_v, ball_pix
 48 ball_v = [0.1, -0.15]
 49 ball_pos = (120.0, 120.0)
 50 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 51 clear_message()
 52
 53 def elapsed_ms():
 54 """Returns milliseconds elapsed since last called"""
 55 global ms
 56 now = time.ticks_ms()
 57 diff = time.ticks_diff(now, ms)
 58 ms = now
 59 return diff
 60
 61 def draw_screen_layout():
 62 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 63 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 64 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 65 display.draw_text("SCORE", 4, 0, BLUE, 1)
 66 display.draw_text("LIVES", 150, 0, BLUE, 1)
 67

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 215 of 295

 68 def beep(freq):
 69 global sound_cut
 70 tone.set_pitch(freq)
 71 tone.play()
 72 sound_cut = 50 # ms countdown
 73
 74 def check_buttons():
 75 global pad_v, n_lives, score
 76
 77 if buttons.is_pressed(BTN_L):
 78 pad_v = -pad_speed
 79 elif buttons.is_pressed(BTN_B):
 80 pad_v = +pad_speed
 81 else:
 82 pad_v = 0 # Stop
 83
 84 if n_lives == 0 and buttons.is_pressed(BTN_U):
 85 n_lives = START_LIVES + 1
 86 score = 0
 87
 88 def new_ball():
 89 global n_lives, serve_timer
 90 n_lives = n_lives - 1
 91 update_score()
 92 if n_lives > 0:
 93 serve_timer = 2000
 94 show_message("Serving...", "Get Ready!", GREEN)
 95 else:
 96 show_message("Game Over!", "U = play again", RED)
 97
 98 def update_score():
 99 display.fill_rect(45, 0, 100, 20, BLACK)
100 display.draw_text(str(score), 45, 0, WHITE, 2)
101 display.fill_rect(195, 0, 45, 20, BLACK)
102 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
103
104 def clear_message():
105 display.fill_rect(1, 120, 238, 80, BLACK)
106
107 def show_message(banner, note, color):
108 clear_message()
109 display.draw_text(banner, 30, 120, color, 3)
110 display.draw_text(note, 30, 160, WHITE, 2)
111
112 draw_screen_layout()
113 new_ball()
114 draw_paddle()
115
116 ms = time.ticks_ms()
117
118 while True:
119 dt = elapsed_ms()
120 check_buttons()
121
122 # Update paddle
123 if pad_v:
124 pad_pos = pad_pos + pad_v * dt
125 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
126 draw_paddle()
127
128 # Check sound timer
129 if sound_cut > 0:
130 sound_cut = sound_cut - dt
131 if sound_cut <= 0:
132 tone.stop()
133
134 # Check serve timer
135 if serve_timer > 0:
136 serve_timer = serve_timer - dt
137 if serve_timer <= 0:
138 serve_ball()
139 else:
140 continue
141
142 if n_lives == 0:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 216 of 295

143 continue
144
145 # Update ball
146 x, y = ball_pos
147 x = x + ball_v[0] * dt
148 y = y + ball_v[1] * dt
149
150 # Check for collision with walls
151 collision = False
152 if x <= 1 or 240 > x >= 239 - BALL_SZ:
153 collision = True
154 beep(SIDES_TONE)
155 ball_v[0] = ball_v[0] * -1
156 if y <= TOP_WALL + 1:
157 collision = True
158 beep(TOP_TONE)
159 ball_v[1] = ball_v[1] * -1
160 elif y > 240:
161 new_ball()
162
163 # Check for collision with paddle
164 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
165 # Calculate ball position relative to paddle
166 pad_ball = x + BALL_SZ - pad_pos
167 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
168 if hit:
169 ball_v[1] = ball_v[1] * -1 # bounce
170 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
171 beep(PADDLE_TONE)
172 collision = True
173 score = score + 1
174 update_score()
175
176 # Draw ball
177 if not collision:
178 ball_pos = (x, y)
179 draw_ball()
180
181

Quiz 4 - Continue

Question 1: What is the value of count after the following code runs?

count = 0
x = 0
while x < 5:
 x = x + 1
 if x == 2:
 continue
 count = count + 1

 4

 5

 3

Objective 12 - Angles

A Sweet Angle!
There's just one thing left to fix in your Handball game.

The paddle has no control over how the ball bounces!
How cool would it be for a skilled player to be able to shoot the ball wherever they wanted?

If you can achieve that, the game will be awesome!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 217 of 295

Dialed-In Rebounds

Let the player control the rebound angle based on where the ball hits the paddle. Check out the
purple bounce angles below.

If the ball hits the CENTER of the paddle → angle=90°
If the ball hits the RIGHT corner → angle=30°
If the ball hits the LEFT corner → angle=150°

Your code already has pad_ball, the ball position relative to paddle. You just need to convert that to a float pad_ratio between -1.0
and +1.0, and then convert that to an angle!

Check the 'Trek!

The hit_ball(angle) function is your key to precise ball control.

Since you can now direct the ball anywhere, this would be a great time to fix the BORING serves the game has been
sending up to now...

Run It!

Your game is now complete.

Play a few rounds of Handball, and enjoy the fruits of your labor!

If you load batteries and go unplugged with this game, check the Hints panel for a bug-fix you'll want to add.

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random

 6
 7 # Screen layout
 8 TOP_WALL = 20
 9 BALL_SZ = 4
 10 PADDLE_W = 20
 11 PADDLE_H = 8
 12 PADDLE_Y = 220
 13
 14 # Sounds
 15 tone = soundmaker.get_tone('trumpet')
 16 sound_cut = 0 # ms until sound effect stops
 17 SIDES_TONE = 392

Don't forget to import the math and random libraries for your jazzy new angles.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 218 of 295

 18 TOP_TONE = 494
 19 PADDLE_TONE = 587
 20
 21 # Paddle state
 22 pad_speed = 0.28 # 280px / 1000ms
 23 pad_pos = 110.0 # Paddle X position
 24 pad_pix = 100
 25
 26 # Game state
 27 START_LIVES = 3 # Lives remaining at start of game
 28 score = 0
 29 n_lives = START_LIVES + 1
 30 serve_timer = 2000
 31 ball_speed = 0.15 # 150 pixels per second
 32
 33 def draw_paddle():
 34 global pad_pix
 35 pix = round(pad_pos)
 36 if pix != pad_pix:
 37 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 38 pad_pix = pix
 39 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 40
 41 def draw_ball():
 42 global ball_pix
 43 pix = (round(ball_pos[0]), round(ball_pos[1]))
 44 if pix != ball_pix:
 45 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 46 ball_pix = pix
 47 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 48
 49 def serve_ball():
 50 global ball_pos, ball_v, ball_pix
 51 ball_v = [0.1, -0.15] # Could be [0,0]. hit_ball() overrides this.
 52 ball_pos = (120.0, 120.0)
 53 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 54 clear_message()
 55
 56 # Hit ball toward paddle at a random angle
 57 angle = random.randrange(-60, -120, -1)
 58 hit_ball(angle)

 59
 60 def elapsed_ms():
 61 """Returns milliseconds elapsed since last called"""
 62 global ms
 63 now = time.ticks_ms()
 64 diff = time.ticks_diff(now, ms)
 65 ms = now
 66 return diff
 67
 68 def draw_screen_layout():
 69 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 70 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 71 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 72 display.draw_text("SCORE", 4, 0, BLUE, 1)
 73 display.draw_text("LIVES", 150, 0, BLUE, 1)
 74
 75 def beep(freq):
 76 global sound_cut
 77 tone.set_pitch(freq)
 78 tone.play()
 79 sound_cut = 50 # ms countdown
 80
 81 def check_buttons():
 82 global v_pad, n_lives

No more BORING serves!

A negative angle will hit the ball toward the paddle.
Pick an angle that's not too off-center. (Maybe I'm being too nice to our player. What do you think?)

Notice that hit_ball() is going to replace the initial value of ball_v[] you set above. That's okay, the
list has to get initialized somewhere so you can leave it as-is.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 219 of 295

 83
 84 if buttons.is_pressed(BTN_L):
 85 v_pad = -pad_speed
 86 elif buttons.is_pressed(BTN_B):
 87 v_pad = +pad_speed
 88 else:
 89 v_pad = 0 # Stop
 90
 91 if n_lives == 0 and buttons.is_pressed(BTN_U):
 92 n_lives = START_LIVES + 1
 93
 94 def new_ball():
 95 global n_lives, serve_timer
 96 n_lives = n_lives - 1
 97 update_score()
 98 if n_lives > 0:
 99 serve_timer = 2000
100 show_message("Serving...", "Get Ready!", GREEN)
101 else:
102 show_message("Game Over!", "U = play again", RED)
103
104 def update_score():
105 display.fill_rect(45, 0, 100, 20, BLACK)
106 display.draw_text(str(score), 45, 0, WHITE, 2)
107 display.fill_rect(195, 0, 45, 20, BLACK)
108 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
109
110 def clear_message():
111 display.fill_rect(1, 120, 238, 80, BLACK)
112
113 def show_message(banner, note, color):
114 clear_message()
115 display.draw_text(banner, 30, 120, color, 3)
116 display.draw_text(note, 30, 160, WHITE, 2)
117
118 def hit_ball(angle):
119 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
120 angle = angle * math.pi / 180
121 ball_v[0] = math.cos(angle) * ball_speed
122 ball_v[1] = -math.sin(angle) * ball_speed

123
124 draw_screen_layout()
125 new_ball()
126 draw_paddle()
127
128 ms = time.ticks_ms()
129
130 while True:
131 dt = elapsed_ms()
132 check_buttons()
133
134 # Update paddle
135 if v_pad:
136 pad_pos = pad_pos + v_pad * dt
137 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
138 draw_paddle()
139
140 # Check sound timer
141 if sound_cut > 0:
142 sound_cut = sound_cut - dt
143 if sound_cut <= 0:
144 tone.stop()
145
146 # Check serve timer

Define a new function def hit_ball(angle).

This will set the ball's velocity so it moves in the direction given by angle.
The global ball_speed sets the magnitude of velocity, regardless of its direction.
The cosine function sets the X velocity ball_v[0].
The sine function sets the Y velocity ball_v[1].

See the Hints panel for details on the math if you're interested!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 220 of 295

147 if serve_timer > 0:
148 serve_timer = serve_timer - dt
149 if serve_timer <= 0:
150 serve_ball()
151 else:
152 continue
153
154 if n_lives == 0:
155 continue
156
157 # Update ball
158 x, y = ball_pos
159 x = x + ball_v[0] * dt
160 y = y + ball_v[1] * dt
161
162 # Check for collision with walls
163 collision = False
164 if x <= 1 or 240 > x >= 239 - BALL_SZ:
165 collision = True
166 beep(SIDES_TONE)
167 ball_v[0] = ball_v[0] * -1
168 if y <= TOP_WALL + 1:
169 collision = True
170 beep(TOP_TONE)
171 ball_v[1] = ball_v[1] * -1
172 elif y > 240:
173 new_ball()
174
175 # Check for collision with paddle
176 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
177 # Calculate ball position relative to paddle
178 pad_ball = x + BALL_SZ - pad_pos
179 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
180 if hit:
181 # Bounce direction based on paddle position
182 center = (PADDLE_W + BALL_SZ) / 2
183 pad_ratio = (pad_ball - center) / center # range -1 to +1
184 angle = 90 - 60 * pad_ratio
185 hit_ball(angle)

186
187 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
188 beep(PADDLE_TONE)
189 collision = True
190 score = score + 1
191 update_score()
192
193 # Draw ball
194 if not collision:
195 ball_pos = (x, y)
196 draw_ball()
197
198

Hints:

How Works hit_ball(angle) ?
Curious about the code in this magic little function? Well, you gotta do a little math to make the ball move juuuust how you
want it to!

In this case you want the ball to move at a particular angle.

You just need to calculate the X and Y velocity values to achieve that!

Replace the simple bounce with player controlled rebound!

Find the paddle center and use it to calculate pad_ratio.
Use that to get the angle: 90° at the center, ±60° to the corners.

See the diagram in the Objective panel for more detail on how pad_ratio relates to the angle.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 221 of 295

Check out the triangle diagram below. Making the ball move on the purple path at angle "a" requires an X and Y component of
velocity, like the RED sides of the triangle.

The purple path is the hypotenuse of the triangle. Its length represents the speed of the ball. Consider that to be 1.0 for
now.

So if you know the angle and one side of a right triangle, how can you find the other sides?

Holy SOHCAHTOA!

The hit_ball(angle) function uses a bit of trigonometry. If you haven't learned about that yet, don't let the name scare you - it's
pretty cool stuff :-)

You'll find the equations for X and Y above match the calculations in hit_ball(angle). Both the X and Y values are multiplied by
ball_speed since you don't want to leave it at 1. 0. Also, since the UP direction on the screen is negative you'll notice the Y is
negated in the function.

Oh, one more thing: Python's trigonometry functions use radians for angle measurement, rather than degrees. The first line of
code in hit_ball(angle) converts from degrees to radians. (180° equals PI radians)

Python's math library has lots of helpful functions, including the trigonometry you need for bodacious ball bounces!

Battery Operated Bugz
As of the time this Mission was published the CodeX firmware has a bug in its internal initialization of the buttons.

When you run from batteries, the buttons may not work properly until you press the RESET button.

To fix this, just add the following function call after your from codex import *. (comment is optional as always)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 222 of 295

https://mathworld.wolfram.com/SOHCAHTOA.html

ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)

Goals:

Define a new function def hit_ball(angle) that sets new ball_v[] X and Y components based on the angle (in degrees) you'd
like the ball to fly.

Add a new variable ball_speed as part of your initial Game State.

Mix up the Serve!

In your serve_ball() function, use randrange() to select an angle and hit_ball() to thwack the ball toward the paddle!

import the math and random libraries.

Use hit_ball(angle) rather than simple bounce inside your game loop for paddle collision.

Tools Found: float, Functions, Variables, import, Locals and Globals

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21
 22 # Paddle state
 23 pad_speed = 0.28 # 280px / 1000ms
 24 pad_pos = 110.0 # Paddle X position
 25 pad_pix = 100
 26
 27 # Game state
 28 START_LIVES = 3 # Lives remaining at start of game
 29 score = 0
 30 n_lives = START_LIVES + 1
 31 serve_timer = 2000
 32 ball_speed = 0.15 # 150 pixels per second
 33
 34 def draw_paddle():
 35 global pad_pix
 36 pix = round(pad_pos)
 37 if pix != pad_pix:
 38 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 39 pad_pix = pix
 40 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 41
 42 def draw_ball():
 43 global ball_pix
 44 pix = (round(ball_pos[0]), round(ball_pos[1]))
 45 if pix != ball_pix:
 46 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 47 ball_pix = pix
 48 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 49

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 223 of 295

 50 def serve_ball():
 51 global ball_pos, ball_v, ball_pix
 52 # Set ball_v: serve toward paddle
 53 ball_v = [0,0]
 54 angle = random.randrange(-60, -120, -1)
 55 hit_ball(angle)
 56 ball_pos = (120.0, 120.0)
 57 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 58 clear_message()
 59
 60 def elapsed_ms():
 61 """Returns milliseconds elapsed since last called"""
 62 global ms
 63 now = time.ticks_ms()
 64 diff = time.ticks_diff(now, ms)
 65 ms = now
 66 return diff
 67
 68 def draw_screen_layout():
 69 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 70 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 71 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 72 display.draw_text("SCORE", 4, 0, BLUE, 1)
 73 display.draw_text("LIVES", 150, 0, BLUE, 1)
 74
 75 def beep(freq):
 76 global sound_cut
 77 tone.set_pitch(freq)
 78 tone.play()
 79 sound_cut = 50 # ms countdown
 80
 81 def check_buttons():
 82 global v_pad, n_lives, score
 83
 84 if buttons.is_pressed(BTN_L):
 85 v_pad = -pad_speed
 86 elif buttons.is_pressed(BTN_B):
 87 v_pad = +pad_speed
 88 else:
 89 v_pad = 0 # Stop
 90
 91 if n_lives == 0 and buttons.is_pressed(BTN_U):
 92 n_lives = START_LIVES + 1
 93 score = 0
 94
 95 def new_ball():
 96 global n_lives, serve_timer
 97 n_lives = n_lives - 1
 98 update_score()
 99 if n_lives > 0:
100 serve_timer = 2000
101 show_message("Serving...", "Get Ready!", GREEN)
102 else:
103 show_message("Game Over!", "U = play again", RED)
104
105 def update_score():
106 display.fill_rect(45, 0, 100, 20, BLACK)
107 display.draw_text(str(score), 45, 0, WHITE, 2)
108 display.fill_rect(195, 0, 45, 20, BLACK)
109 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
110
111 def clear_message():
112 display.fill_rect(1, 120, 238, 80, BLACK)
113
114 def show_message(banner, note, color):
115 clear_message()
116 display.draw_text(banner, 30, 120, color, 3)
117 display.draw_text(note, 30, 160, WHITE, 2)
118
119 def hit_ball(angle):
120 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
121 angle = angle * math.pi / 180
122 ball_v[0] = math.cos(angle) * ball_speed
123 ball_v[1] = -math.sin(angle) * ball_speed
124

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 224 of 295

125 draw_screen_layout()
126 new_ball()
127 draw_paddle()
128
129 ms = time.ticks_ms()
130
131 while True:
132 dt = elapsed_ms()
133 check_buttons()
134
135 # Update paddle
136 if v_pad:
137 pad_pos = pad_pos + v_pad * dt
138 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
139 draw_paddle()
140
141 # Check sound timer
142 if sound_cut > 0:
143 sound_cut = sound_cut - dt
144 if sound_cut <= 0:
145 tone.stop()
146
147 # Check serve timer
148 if serve_timer > 0:
149 serve_timer = serve_timer - dt
150 if serve_timer <= 0:
151 serve_ball()
152 else:
153 continue
154
155 if n_lives == 0:
156 continue
157
158 # Update ball
159 x, y = ball_pos
160 x = x + ball_v[0] * dt
161 y = y + ball_v[1] * dt
162
163 # Check for collision with walls
164 collision = False
165 if x <= 1 or 240 > x >= 239 - BALL_SZ:
166 collision = True
167 beep(SIDES_TONE)
168 ball_v[0] = ball_v[0] * -1
169 if y <= TOP_WALL + 1:
170 collision = True
171 beep(TOP_TONE)
172 ball_v[1] = ball_v[1] * -1
173 elif y > 240:
174 new_ball()
175
176 # Check for collision with paddle
177 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
178 # Calculate ball position relative to paddle
179 pad_ball = x + BALL_SZ - pad_pos
180 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
181 if hit:
182 # Bounce direction based on paddle position
183 center = (PADDLE_W + BALL_SZ) / 2
184 pad_ratio = (pad_ball - center) / center # range -1 to +1
185 angle = 90 - 60 * pad_ratio
186 hit_ball(angle)
187
188 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
189 beep(PADDLE_TONE)
190 collision = True
191 score = score + 1
192 update_score()
193
194 # Draw ball
195 if not collision:
196 ball_pos = (x, y)
197 draw_ball()
198
199

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 225 of 295

Mission 15 Complete

Radical!
It is SO cool that you've built this game FROM SCRATCH!

There are so many ways you could extend this!

Get ready for the next Mission, where you'll continue the journey of Arcade Archaeology...

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 226 of 295

Mission 16 - Break Out

Breakout!
Now that you've conquered Handball you are all set to code one of the all-time arcade classics!

History
The concept for Breakout came from Atari founder Nolan Bushnell, who wanted a single-player
game to follow up the 1972 smash-hit Pong - one of the first video games many people encountered.

He gave the challenge to young Steve Jobs, who recruited his friend Steve Wozniak to
implement the game. Do those names sound familiar? They went on to found Apple
Computers!!

Breakout hit the arcades in 1976, becoming one of the top earning arcade video games that year.
That means a lot of players dropped quarters (25 cents per turn) into arcade cabinets like the
one shown at right.

Your Task
...is to follow in the footsteps of Jobs and Wozniak. Imagine that you've been tasked by Atari's
CEO to create the next hit game for the company. Ready to break some bricks?

Objective 1 - Prototype

Breakout Begins!
This mission starts where the previous Handball Mission left off. You'll need to use Save As... to save your Handball code to a new
file for Breakout.

The game Breakout adds 8 rows of bricks as shown at right (original Atari Arcade screen).

Two rows each, from the top down: RED, ORANGE, GREEN, YELLOW.
Horizontally there are 14 bricks in each row in the original game. Since the CodeX screen is
smaller than the original, 10 bricks across will do.

By the end of this mission the player will be able to score points by smashing bricks! Different color
bricks are worth different points. More on that later!

Prototyping

To start with, just try drawing the bricks to the screen as shown. This will be a "prototype" of the real
thing. Sure, the bricks won't DO anything yet...

But it will be SO inspiring to see the fully-rendered game arena!
And hey, it's just a bunch of rectangles. So why not!?

Open the Last Handball File
You DID get Handball running, right?

Save to a New File!

Use the File → Save As menu to create a new file called Breakout.

Check the 'Trek!

The CodeTrek will guide you like a master bricklayer!

This is prototyping.
You can play around with the size of the bricks, colors, spacing, etc.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 227 of 295

Run It!

Nice looking bricks, eh?

It's kinda fun driving the ball through them.
...and it will be even MORE fun to smash those bricks for points!

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21
 22 # Paddle state
 23 pad_speed = 0.28 # 280px / 1000ms
 24 pad_pos = 110.0 # Paddle X position
 25 pad_pix = 100
 26
 27 # Game state
 28 START_LIVES = 3 # Lives remaining at start of game
 29 score = 0
 30 n_lives = START_LIVES + 1
 31 serve_timer = 2000
 32 ball_speed = 0.15 # 150 pixels per second
 33
 34 def draw_paddle():
 35 global pad_pix
 36 pix = round(pad_pos)
 37 if pix != pad_pix:
 38 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 39 pad_pix = pix
 40 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 41
 42 def draw_ball():
 43 global ball_pix
 44 pix = (round(ball_pos[0]), round(ball_pos[1]))
 45 if pix != ball_pix:
 46 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 47 ball_pix = pix
 48 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 49
 50 def serve_ball():
 51 global ball_pos, ball_v, ball_pix
 52 # Set ball_v: serve toward paddle
 53 ball_v = [0,0]
 54 angle = random.randrange(-60, -120, -1)
 55 hit_ball(angle)
 56 ball_pos = (120.0, 120.0)
 57 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 58 clear_message()
 59
 60 def elapsed_ms():
 61 """Returns milliseconds elapsed since last called"""
 62 global ms
 63 now = time.ticks_ms()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 228 of 295

 64 diff = time.ticks_diff(now, ms)
 65 ms = now
 66 return diff
 67
 68 def draw_screen_layout():
 69 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 70 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 71 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 72 display.draw_text("SCORE", 4, 0, BLUE, 1)
 73 display.draw_text("LIVES", 150, 0, BLUE, 1)
 74
 75 def beep(freq):
 76 global sound_cut
 77 tone.set_pitch(freq)
 78 tone.play()
 79 sound_cut = 50 # ms countdown
 80
 81 def check_buttons():
 82 global pad_v, n_lives, score
 83
 84 if buttons.is_pressed(BTN_L):
 85 pad_v = -pad_speed
 86 elif buttons.is_pressed(BTN_B):
 87 pad_v = +pad_speed
 88 else:
 89 pad_v = 0 # Stop
 90
 91 if n_lives == 0 and buttons.is_pressed(BTN_U):
 92 n_lives = START_LIVES + 1
 93 score = 0
 94
 95 def new_ball():
 96 global n_lives, serve_timer
 97 n_lives = n_lives - 1
 98 update_score()
 99 if n_lives > 0:
100 serve_timer = 2000
101 show_message("Serving...", "Get Ready!", GREEN)
102 else:
103 show_message("Game Over!", "U = play again", RED)
104
105 def update_score():
106 display.fill_rect(45, 0, 100, 20, BLACK)
107 display.draw_text(str(score), 45, 0, WHITE, 2)
108 display.fill_rect(195, 0, 45, 20, BLACK)
109 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
110
111 def clear_message():
112 display.fill_rect(1, 120, 238, 80, BLACK)
113
114 def show_message(banner, note, color):
115 clear_message()
116 display.draw_text(banner, 30, 120, color, 3)
117 display.draw_text(note, 30, 160, WHITE, 2)
118
119 def hit_ball(angle):
120 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
121 angle = angle * math.pi / 180
122 ball_v[0] = math.cos(angle) * ball_speed
123 ball_v[1] = -math.sin(angle) * ball_speed
124
125 def brick_row(y, color):
126 """Lay down a row of bricks. Experiment with size."""
127 for x in range(2, 240, 24):
128 display.fill_rect(x, y, 20, 6, color)

129

Define a function def brick_row(y, color) that draws one row of bricks.

Start at x=2 to make room for the left wall, and 1 pixel gap.
Make each brick a rectangle 20 pixels wide, plus a 4 pixel gap.

You can fit 10 of these bricks across the screen!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 229 of 295

130 def draw_bricks():
131 """Place 8 rows of bricks. """
132 brick_row(30, RED)
133 brick_row(40, RED)
134 brick_row(50, ORANGE)
135 brick_row(60, ORANGE)
136 brick_row(70, GREEN)
137 brick_row(80, GREEN)
138 brick_row(90, YELLOW)
139 brick_row(100, YELLOW)

140
141 draw_bricks()

142
143 draw_screen_layout()
144 new_ball()
145 draw_paddle()
146
147 ms = time.ticks_ms()
148
149 while True:
150 dt = elapsed_ms()
151 check_buttons()
152
153 # Update paddle
154 if pad_v:
155 pad_pos = pad_pos + pad_v * dt
156 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
157 draw_paddle()
158
159 # Check sound timer
160 if sound_cut > 0:
161 sound_cut = sound_cut - dt
162 if sound_cut <= 0:
163 tone.stop()
164
165 # Check serve timer
166 if serve_timer > 0:
167 serve_timer = serve_timer - dt
168 if serve_timer <= 0:
169 serve_ball()
170 else:
171 continue
172
173 if n_lives == 0:
174 continue
175
176 # Update ball
177 x, y = ball_pos
178 x = x + ball_v[0] * dt
179 y = y + ball_v[1] * dt
180
181 # Check for collision with walls
182 collision = False
183 if x <= 1 or 240 > x >= 239 - BALL_SZ:
184 collision = True
185 beep(SIDES_TONE)
186 ball_v[0] = ball_v[0] * -1
187 if y <= TOP_WALL + 1:
188 collision = True
189 beep(TOP_TONE)
190 ball_v[1] = ball_v[1] * -1
191 elif y > 240:

Define a function def draw_bricks()

Start at a Y-coordinate of y=30 and place a row every 10 pixels down.
Since the bricks are 6 pixels high, this will leave a 4 pixel gap between rows.
Use colors just like the original Breakout game!

Don't forget to call your draw_bricks() function in your initialization code.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 230 of 295

192 new_ball()
193
194 # Check for collision with paddle
195 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
196 # Calculate ball position relative to paddle
197 pad_ball = x + BALL_SZ - pad_pos
198 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
199 if hit:
200 # Bounce direction based on paddle position
201 center = (PADDLE_W + BALL_SZ) / 2
202 pad_ratio = (pad_ball - center) / center # range -1 to +1
203 angle = 90 - 60 * pad_ratio
204 hit_ball(angle)
205
206 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
207 beep(PADDLE_TONE)
208 collision = True
209 score = score + 1
210 update_score()
211
212 # Draw ball
213 if not collision:
214 ball_pos = (x, y)
215 draw_ball()
216
217

Hint:

Prototyping Pro Tip
Ancient engineering wisdom warns about showing "too realistic" prototypes to your boss.

They may not fully understand the technology side of things, and get the idea that the project must be 99% finished, since
it looks so good!

What Say You?

Do you think you're 99% finished implementing Breakout at this point?

Hmmmm....

Goals:

Define a function def brick_row(y, color) that draws one row of bricks.

Define a function def draw_bricks() that draws 8 rows of bricks, by calling brick_row() eight times.

Call the draw_bricks() function in your initialization code.

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 231 of 295

 21
 22 # Paddle state
 23 pad_speed = 0.28 # 280px / 1000ms
 24 pad_pos = 110.0 # Paddle X position
 25 pad_pix = 100
 26
 27 # Game state
 28 START_LIVES = 3 # Lives remaining at start of game
 29 score = 0
 30 n_lives = START_LIVES + 1
 31 serve_timer = 2000
 32 ball_speed = 0.15 # 150 pixels per second
 33
 34 def draw_paddle():
 35 global pad_pix
 36 pix = round(pad_pos)
 37 if pix != pad_pix:
 38 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 39 pad_pix = pix
 40 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 41
 42 def draw_ball():
 43 global ball_pix
 44 pix = (round(ball_pos[0]), round(ball_pos[1]))
 45 if pix != ball_pix:
 46 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 47 ball_pix = pix
 48 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 49
 50 def serve_ball():
 51 global ball_pos, ball_v, ball_pix
 52 # Set ball_v: serve toward paddle
 53 ball_v = [0,0]
 54 angle = random.randrange(-60, -120, -1)
 55 hit_ball(angle)
 56 ball_pos = (120.0, 120.0)
 57 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 58 clear_message()
 59
 60 def elapsed_ms():
 61 """Returns milliseconds elapsed since last called"""
 62 global ms
 63 now = time.ticks_ms()
 64 diff = time.ticks_diff(now, ms)
 65 ms = now
 66 return diff
 67
 68 def draw_screen_layout():
 69 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 70 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 71 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 72 display.draw_text("SCORE", 4, 0, BLUE, 1)
 73 display.draw_text("LIVES", 150, 0, BLUE, 1)
 74
 75 def beep(freq):
 76 global sound_cut
 77 tone.set_pitch(freq)
 78 tone.play()
 79 sound_cut = 50 # ms countdown
 80
 81 def check_buttons():
 82 global pad_v, n_lives, score
 83
 84 if buttons.is_pressed(BTN_L):
 85 pad_v = -pad_speed
 86 elif buttons.is_pressed(BTN_B):
 87 pad_v = +pad_speed
 88 else:
 89 pad_v = 0 # Stop
 90
 91 if n_lives == 0 and buttons.is_pressed(BTN_U):
 92 n_lives = START_LIVES + 1
 93 score = 0
 94
 95 def new_ball():

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 232 of 295

 96 global n_lives, serve_timer
 97 n_lives = n_lives - 1
 98 update_score()
 99 if n_lives > 0:
100 serve_timer = 2000
101 show_message("Serving...", "Get Ready!", GREEN)
102 else:
103 show_message("Game Over!", "U = play again", RED)
104
105 def update_score():
106 display.fill_rect(45, 0, 100, 20, BLACK)
107 display.draw_text(str(score), 45, 0, WHITE, 2)
108 display.fill_rect(195, 0, 45, 20, BLACK)
109 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
110
111 def clear_message():
112 display.fill_rect(1, 120, 238, 80, BLACK)
113
114 def show_message(banner, note, color):
115 clear_message()
116 display.draw_text(banner, 30, 120, color, 3)
117 display.draw_text(note, 30, 160, WHITE, 2)
118
119 def hit_ball(angle):
120 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
121 angle = angle * math.pi / 180
122 ball_v[0] = math.cos(angle) * ball_speed
123 ball_v[1] = -math.sin(angle) * ball_speed
124
125 def brick_row(y, color):
126 """Lay down a row of bricks. Experiment with size."""
127 for x in range(2, 240, 24):
128 display.fill_rect(x, y, 20, 6, color)
129
130 def draw_bricks():
131 """Place 8 rows of bricks. """
132 brick_row(30, RED)
133 brick_row(40, RED)
134 brick_row(50, ORANGE)
135 brick_row(60, ORANGE)
136 brick_row(70, GREEN)
137 brick_row(80, GREEN)
138 brick_row(90, YELLOW)
139 brick_row(100, YELLOW)
140
141 draw_bricks()
142
143 draw_screen_layout()
144 new_ball()
145 draw_paddle()
146
147 ms = time.ticks_ms()
148
149 while True:
150 dt = elapsed_ms()
151 check_buttons()
152
153 # Update paddle
154 if pad_v:
155 pad_pos = pad_pos + pad_v * dt
156 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
157 draw_paddle()
158
159 # Check sound timer
160 if sound_cut > 0:
161 sound_cut = sound_cut - dt
162 if sound_cut <= 0:
163 tone.stop()
164
165 # Check serve timer
166 if serve_timer > 0:
167 serve_timer = serve_timer - dt
168 if serve_timer <= 0:
169 serve_ball()
170 else:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 233 of 295

171 continue
172
173 if n_lives == 0:
174 continue
175
176 # Update ball
177 x, y = ball_pos
178 x = x + ball_v[0] * dt
179 y = y + ball_v[1] * dt
180
181 # Check for collision with walls
182 collision = False
183 if x <= 1 or 240 > x >= 239 - BALL_SZ:
184 collision = True
185 beep(SIDES_TONE)
186 ball_v[0] = ball_v[0] * -1
187 if y <= TOP_WALL + 1:
188 collision = True
189 beep(TOP_TONE)
190 ball_v[1] = ball_v[1] * -1
191 elif y > 240:
192 new_ball()
193
194 # Check for collision with paddle
195 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
196 # Calculate ball position relative to paddle
197 pad_ball = x + BALL_SZ - pad_pos
198 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
199 if hit:
200 # Bounce direction based on paddle position
201 center = (PADDLE_W + BALL_SZ) / 2
202 pad_ratio = (pad_ball - center) / center # range -1 to +1
203 angle = 90 - 60 * pad_ratio
204 hit_ball(angle)
205
206 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
207 beep(PADDLE_TONE)
208 collision = True
209 score = score + 1
210 update_score()
211
212 # Draw ball
213 if not collision:
214 ball_pos = (x, y)
215 draw_ball()
216
217

Objective 2 - Matrix

Enter the Matrix!
Nice looking prototype! Now, how are you going to make those bricks interact with the game? You gotta:

Detect when the ball hits a brick.
Destroy the brick when it gets hit!

Collision Detection

Should you test every pixel the ball is about to hit? Using display.get_pixel(x,y) to read the color of each pixel on the screen is one
strategy.

But that's a LOT of pixel tests, every time through your game loop.
It would be much faster to check using boundaries, like you did with the walls.
And look! The gaps between rows and columns of bricks make a grid of wall-like boundaries.
Checking if the ball is inside a "grid square" should be pretty easy!

Got Bricks?: True or False

At the start there's a brick in each grid square.

But after you start smashing bricks, some of them will be gone!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 234 of 295

The game needs a way to track whether there's a brick in each square.

A row with ten bricks: a list of bools:

row = [True, True, True, True, True, True, True, True, True, True]

You could make a list for each row of bricks, as shown above.

Then if the ball hits a brick, say the 4th one from the left, set row[3] = False to mark it
destroyed.
And when the ball enters a grid square i on this row, you can test for a brick with
row[i] == True.
But you have more than one row of bricks...

Matrix: a list of rows

Breakout has 8 rows X 10 columns of bricks. A 2D array like this is called a "matrix".

Check out this matrix of bools laying over the bricks.

To create a matrix like this in Python use a list of lists! It's just a list of rows like the row example above.

The Brick Matrix
bricks = [
 [True, True, True, True, True, True, True, True, True, True],
 [True, True, True, True, True, True, True, True, True, True],
 [True, True, True, True, True, True, True, True, True, True],
 [True, True, True, True, True, True, True, True, True, True],
 [True, True, True, True, True, True, True, True, True, True],
 [True, True, True, True, True, True, True, True, True, True],
 [True, True, True, True, True, True, True, True, True, True],
 [True, True, True, True, True, True, True, True, True, True],
]

Above is one way to initialize your brick matrix. But the CodeTrek will show you a better way, that requires less typing and ensures
the right number of rows and columns!

Check the 'Trek!

Time for you to create your own matrix!

Run It!

Open the Console and gaze into the matrix!

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 235 of 295

 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21
 22 # Paddle state
 23 pad_speed = 0.28 # 280px / 1000ms
 24 pad_pos = 110.0 # Paddle X position
 25 pad_pix = 100
 26
 27 # Game state
 28 START_LIVES = 3 # Lives remaining at start of game
 29 score = 0
 30 n_lives = START_LIVES + 1
 31 serve_timer = 2000
 32 ball_speed = 0.15 # 150 pixels per second
 33
 34 # Bricks
 35 BRICKS_ACROSS = 10
 36 BRICKS_DOWN = 8

 37
 38 def draw_paddle():
 39 global pad_pix
 40 pix = round(pad_pos)
 41 if pix != pad_pix:
 42 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 43 pad_pix = pix
 44 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 45
 46 def draw_ball():
 47 global ball_pix
 48 pix = (round(ball_pos[0]), round(ball_pos[1]))
 49 if pix != ball_pix:
 50 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 51 ball_pix = pix
 52 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 53
 54 def serve_ball():
 55 global ball_pos, ball_v, ball_pix
 56 # Set ball_v: serve toward paddle
 57 ball_v = [0,0]
 58 angle = random.randrange(-60, -120, -1)
 59 hit_ball(angle)
 60 ball_pos = (120.0, 120.0)
 61 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 62 clear_message()
 63
 64 def elapsed_ms():
 65 """Returns milliseconds elapsed since last called"""
 66 global ms
 67 now = time.ticks_ms()
 68 diff = time.ticks_diff(now, ms)
 69 ms = now
 70 return diff
 71
 72 def draw_screen_layout():
 73 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 74 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 75 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 76 display.draw_text("SCORE", 4, 0, BLUE, 1)
 77 display.draw_text("LIVES", 150, 0, BLUE, 1)
 78
 79 def beep(freq):

Add constants for the number of columns across and rows down of bricks.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 236 of 295

 80 global sound_cut
 81 tone.set_pitch(freq)
 82 tone.play()
 83 sound_cut = 50 # ms countdown
 84
 85 def check_buttons():
 86 global pad_v, n_lives, score
 87
 88 if buttons.is_pressed(BTN_L):
 89 pad_v = -pad_speed
 90 elif buttons.is_pressed(BTN_B):
 91 pad_v = +pad_speed
 92 else:
 93 pad_v = 0 # Stop
 94
 95 if n_lives == 0 and buttons.is_pressed(BTN_U):
 96 n_lives = START_LIVES + 1
 97 score = 0
 98
 99 def new_ball():
100 global n_lives, serve_timer
101 n_lives = n_lives - 1
102 update_score()
103 if n_lives > 0:
104 serve_timer = 2000
105 show_message("Serving...", "Get Ready!", GREEN)
106 else:
107 show_message("Game Over!", "U = play again", RED)
108
109 def update_score():
110 display.fill_rect(45, 0, 100, 20, BLACK)
111 display.draw_text(str(score), 45, 0, WHITE, 2)
112 display.fill_rect(195, 0, 45, 20, BLACK)
113 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
114
115 def clear_message():
116 display.fill_rect(1, 120, 238, 80, BLACK)
117
118 def show_message(banner, note, color):
119 clear_message()
120 display.draw_text(banner, 30, 120, color, 3)
121 display.draw_text(note, 30, 160, WHITE, 2)
122
123 def hit_ball(angle):
124 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
125 angle = angle * math.pi / 180
126 ball_v[0] = math.cos(angle) * ball_speed
127 ball_v[1] = -math.sin(angle) * ball_speed
128
129 def brick_row(y, color):
130 """Lay down a row of bricks. Experiment with size."""
131 for x in range(2, 240, 24):
132 display.fill_rect(x, y, 20, 6, color)
133
134 def draw_bricks():
135 """Place 8 rows of bricks. """
136 brick_row(30, RED)
137 brick_row(40, RED)
138 brick_row(50, ORANGE)
139 brick_row(60, ORANGE)
140 brick_row(70, GREEN)
141 brick_row(80, GREEN)
142 brick_row(90, YELLOW)
143 brick_row(100, YELLOW)
144
145 def setup_bricks():
146 global bricks
147 bricks = [] # Empty matrix (list of rows)
148 for i in range(BRICKS_DOWN):
149 bricks.append([]) # Empty row (list of columns)
150 for j in range(BRICKS_ACROSS):
151 bricks[i].append(True) # Add column to this row

Define a def setup_bricks() function:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 237 of 295

152
153 setup_bricks()
154 i = ?? # TODO: row of brick to hit
155 j = ?? # TODO: column of brick to hit
156 bricks[i][j] = False # Mark one brick as destroyed!
157 print("bricks=", bricks)

158
159 draw_bricks()
160
161 draw_screen_layout()
162 new_ball()
163 draw_paddle()
164
165 ms = time.ticks_ms()
166
167 while True:
168 dt = elapsed_ms()
169 check_buttons()
170
171 # Update paddle
172 if pad_v:
173 pad_pos = pad_pos + pad_v * dt
174 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
175 draw_paddle()
176
177 # Check sound timer
178 if sound_cut > 0:
179 sound_cut = sound_cut - dt
180 if sound_cut <= 0:
181 tone.stop()
182
183 # Check serve timer
184 if serve_timer > 0:
185 serve_timer = serve_timer - dt
186 if serve_timer <= 0:
187 serve_ball()
188 else:
189 continue
190
191 if n_lives == 0:
192 continue
193
194 # Update ball
195 x, y = ball_pos
196 x = x + ball_v[0] * dt
197 y = y + ball_v[1] * dt
198
199 # Check for collision with walls
200 collision = False
201 if x <= 1 or 240 > x >= 239 - BALL_SZ:
202 collision = True
203 beep(SIDES_TONE)
204 ball_v[0] = ball_v[0] * -1
205 if y <= TOP_WALL + 1:
206 collision = True
207 beep(TOP_TONE)
208 ball_v[1] = ball_v[1] * -1
209 elif y > 240:

A loop of loops
To build a list of lists !

The outer loop i is rows, and the inner loop j is columns.

See the list tool to learn more about the append() function.

Add some test code

Set the i= and j= values to the row and column specified in your Objective Goals.
Setting that specific brick to False is how your future code will mark it as
having been destroyed by the ball.

For now this will have no visible effect, so just use print() to dump the matrix to the
console so CodeSpace can check your work!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 238 of 295

210 new_ball()
211
212 # Check for collision with paddle
213 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
214 # Calculate ball position relative to paddle
215 pad_ball = x + BALL_SZ - pad_pos
216 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
217 if hit:
218 # Bounce direction based on paddle position
219 center = (PADDLE_W + BALL_SZ) / 2
220 pad_ratio = (pad_ball - center) / center # range -1 to +1
221 angle = 90 - 60 * pad_ratio
222 hit_ball(angle)
223
224 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
225 beep(PADDLE_TONE)
226 collision = True
227 score = score + 1
228 update_score()
229
230 # Draw ball
231 if not collision:
232 ball_pos = (x, y)
233 draw_ball()
234
235

Goals:

Define a function def setup_bricks() that initializes a global bricks to a 2D array of bools containing 8 rows X 10 columns of
True.

Use the print() statement to display your bool matrix on the Console.

Set the brick at row 7, column 3 to False before printing the matrix.

Tools Found: list, bool, Locals and Globals, Constants, Loops

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21
 22 # Paddle state
 23 pad_speed = 0.28 # 280px / 1000ms
 24 pad_pos = 110.0 # Paddle X position
 25 pad_pix = 100
 26
 27 # Game state
 28 START_LIVES = 3 # Lives remaining at start of game
 29 score = 0
 30 n_lives = START_LIVES + 1
 31 serve_timer = 2000

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 239 of 295

 32 ball_speed = 0.15 # 150 pixels per second
 33
 34 # Bricks
 35 BRICKS_ACROSS = 10
 36 BRICKS_DOWN = 8
 37
 38 def draw_paddle():
 39 global pad_pix
 40 pix = round(pad_pos)
 41 if pix != pad_pix:
 42 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 43 pad_pix = pix
 44 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 45
 46 def draw_ball():
 47 global ball_pix
 48 pix = (round(ball_pos[0]), round(ball_pos[1]))
 49 if pix != ball_pix:
 50 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 51 ball_pix = pix
 52 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 53
 54 def serve_ball():
 55 global ball_pos, ball_v, ball_pix
 56 # Set ball_v: serve toward paddle
 57 ball_v = [0,0]
 58 angle = random.randrange(-60, -120, -1)
 59 hit_ball(angle)
 60 ball_pos = (120.0, 120.0)
 61 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 62 clear_message()
 63
 64 def elapsed_ms():
 65 """Returns milliseconds elapsed since last called"""
 66 global ms
 67 now = time.ticks_ms()
 68 diff = time.ticks_diff(now, ms)
 69 ms = now
 70 return diff
 71
 72 def draw_screen_layout():
 73 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 74 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 75 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 76 display.draw_text("SCORE", 4, 0, BLUE, 1)
 77 display.draw_text("LIVES", 150, 0, BLUE, 1)
 78
 79 def beep(freq):
 80 global sound_cut
 81 tone.set_pitch(freq)
 82 tone.play()
 83 sound_cut = 50 # ms countdown
 84
 85 def check_buttons():
 86 global pad_v, n_lives, score
 87
 88 if buttons.is_pressed(BTN_L):
 89 pad_v = -pad_speed
 90 elif buttons.is_pressed(BTN_B):
 91 pad_v = +pad_speed
 92 else:
 93 pad_v = 0 # Stop
 94
 95 if n_lives == 0 and buttons.is_pressed(BTN_U):
 96 n_lives = START_LIVES + 1
 97 score = 0
 98
 99 def new_ball():
100 global n_lives, serve_timer
101 n_lives = n_lives - 1
102 update_score()
103 if n_lives > 0:
104 serve_timer = 2000
105 show_message("Serving...", "Get Ready!", GREEN)
106 else:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 240 of 295

107 show_message("Game Over!", "U = play again", RED)
108
109 def update_score():
110 display.fill_rect(45, 0, 100, 20, BLACK)
111 display.draw_text(str(score), 45, 0, WHITE, 2)
112 display.fill_rect(195, 0, 45, 20, BLACK)
113 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
114
115 def clear_message():
116 display.fill_rect(1, 120, 238, 80, BLACK)
117
118 def show_message(banner, note, color):
119 clear_message()
120 display.draw_text(banner, 30, 120, color, 3)
121 display.draw_text(note, 30, 160, WHITE, 2)
122
123 def hit_ball(angle):
124 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
125 angle = angle * math.pi / 180
126 ball_v[0] = math.cos(angle) * ball_speed
127 ball_v[1] = -math.sin(angle) * ball_speed
128
129 def brick_row(y, color):
130 """Lay down a row of bricks. Experiment with size."""
131 for x in range(2, 240, 24):
132 display.fill_rect(x, y, 20, 6, color)
133
134 def draw_bricks():
135 """Place 8 rows of bricks. """
136 brick_row(30, RED)
137 brick_row(40, RED)
138 brick_row(50, ORANGE)
139 brick_row(60, ORANGE)
140 brick_row(70, GREEN)
141 brick_row(80, GREEN)
142 brick_row(90, YELLOW)
143 brick_row(100, YELLOW)
144
145 def setup_bricks():
146 global bricks
147 bricks = [] # Empty matrix (list of rows)
148 for i in range(BRICKS_DOWN):
149 bricks.append([]) # Empty row (list of columns)
150 for j in range(BRICKS_ACROSS):
151 bricks[i].append(True) # Add column to this row #@1
152
153 setup_bricks()
154 i = 7 # TODO: row of brick to hit
155 j = 3 # TODO: column of brick to hit
156 bricks[i][j] = False # Mark one brick as destroyed!
157 print("bricks=", bricks)
158
159 draw_bricks()
160
161 draw_screen_layout()
162 new_ball()
163 draw_paddle()
164
165 ms = time.ticks_ms()
166
167 while True:
168 dt = elapsed_ms()
169 check_buttons()
170
171 # Update paddle
172 if pad_v:
173 pad_pos = pad_pos + pad_v * dt
174 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
175 draw_paddle()
176
177 # Check sound timer
178 if sound_cut > 0:
179 sound_cut = sound_cut - dt
180 if sound_cut <= 0:
181 tone.stop()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 241 of 295

182
183 # Check serve timer
184 if serve_timer > 0:
185 serve_timer = serve_timer - dt
186 if serve_timer <= 0:
187 serve_ball()
188 else:
189 continue
190
191 if n_lives == 0:
192 continue
193
194 # Update ball
195 x, y = ball_pos
196 x = x + ball_v[0] * dt
197 y = y + ball_v[1] * dt
198
199 # Check for collision with walls
200 collision = False
201 if x <= 1 or 240 > x >= 239 - BALL_SZ:
202 collision = True
203 beep(SIDES_TONE)
204 ball_v[0] = ball_v[0] * -1
205 if y <= TOP_WALL + 1:
206 collision = True
207 beep(TOP_TONE)
208 ball_v[1] = ball_v[1] * -1
209 elif y > 240:
210 new_ball()
211
212 # Check for collision with paddle
213 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
214 # Calculate ball position relative to paddle
215 pad_ball = x + BALL_SZ - pad_pos
216 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
217 if hit:
218 # Bounce direction based on paddle position
219 center = (PADDLE_W + BALL_SZ) / 2
220 pad_ratio = (pad_ball - center) / center # range -1 to +1
221 angle = 90 - 60 * pad_ratio
222 hit_ball(angle)
223
224 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
225 beep(PADDLE_TONE)
226 collision = True
227 score = score + 1
228 update_score()
229
230 # Draw ball
231 if not collision:
232 ball_pos = (x, y)
233 draw_ball()
234
235

Quiz 1 - Making of the Matrix

For a card game, I've created the following matrix. The cards will be laid out in rows and columns.

Face up → True
Face down → False

cards = [
 [True, False, True],
 [True, True, True],
 [False, False, True],
 [True, False, False],
]

Question 1: How many rows are in the cards matrix?

 4

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 242 of 295

 2

 3

Question 2: How many columns are in the cards matrix?

 3

 2

 4

Question 3: Is the card at cards[2][1] Face up or Face down?

 Face down

 Face up

Question 4: What is the value of my_list after the following code runs?

my_list = [5, 4, 9]
my_list.append(2)

 [5, 4, 9, 2]

 [2, 5, 4, 9]

 [5, 4, 9, [2]]

 [5, 4, 9], [5, 4, 9]

Objective 3 - Brick Layer

Brick by Brick
It's time to say goodbye to your "prototype" bricks, and rebuild them matrix-style so they can be fully controlled by your code.

Measuring Up the Matrix

Your prototype shows you the dimensions for the bricks, but you need to make constants for those. You already have BALL_SZ for
spacing the rows and columns. The figure below shows some additional constants you'll need to define.

Based on your prototype, BRICKS_Y_START = 30. That's the top of the first row of bricks. Notice there's also a BALL_SZ gap above and to
the left of each brick.

This gap size simplifies collision detection.
If the ball X,Y coordinates land in one of those grid squares, it is colliding with the brick!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 243 of 295

See where BRICKS_X_START is pointing? It's to the left of the wall, and that wall is at x=0 !

When your code calculates where to draw the first brick, it will be starting from BRICKS_X_START = -2 then adding the BALL_SZ gap
to get the X coordinate.

Check the 'Trek!

The CodeTrek will guide you to defining all those cool constants.

Then you'll make a function that drops bricks exactly where you want them!

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21
 22 # Paddle state
 23 pad_speed = 0.28 # 280px / 1000ms
 24 pad_pos = 110.0 # Paddle X position
 25 pad_pix = 100
 26
 27 # Game state
 28 START_LIVES = 3 # Lives remaining at start of game
 29 score = 0
 30 n_lives = START_LIVES + 1
 31 serve_timer = 2000
 32 ball_speed = 0.15 # 150 pixels per second
 33
 34 # Bricks
 35 BRICKS_ACROSS = 10
 36 BRICKS_DOWN = 8
 37 BRICK_W = 20
 38 BRICK_H = 6
 39 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 40 BRICKS_Y_START = 30
 41 COL_W = BRICK_W + BALL_SZ
 42 ROW_H = BRICK_H + BALL_SZ
 43 BRICK_COLORS = (RED, RED, ORANGE,...) # TODO: finish colors

 44
 45 def draw_paddle():
 46 global pad_pix
 47 pix = round(pad_pos)
 48 if pix != pad_pix:
 49 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)

Size it up! These constants define the size, spacing, position, and color of
bricks in the game.

The colors are in a tuple, so you can use the row i as an index to
find the color of a row of bricks.
There should be exactly 8 items in this tuple. Be sure to match the
color of each row in the original Breakout game!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 244 of 295

 50 pad_pix = pix
 51 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 52
 53 def draw_ball():
 54 global ball_pix
 55 pix = (round(ball_pos[0]), round(ball_pos[1]))
 56 if pix != ball_pix:
 57 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 58 ball_pix = pix
 59 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 60
 61 def serve_ball():
 62 global ball_pos, ball_v, ball_pix
 63 # Set ball_v: serve toward paddle
 64 ball_v = [0,0]
 65 angle = random.randrange(-60, -120, -1)
 66 hit_ball(angle)
 67 ball_pos = (120.0, 120.0)
 68 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 69 clear_message()
 70
 71 def elapsed_ms():
 72 """Returns milliseconds elapsed since last called"""
 73 global ms
 74 now = time.ticks_ms()
 75 diff = time.ticks_diff(now, ms)
 76 ms = now
 77 return diff
 78
 79 def draw_screen_layout():
 80 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 81 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 82 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 83 display.draw_text("SCORE", 4, 0, BLUE, 1)
 84 display.draw_text("LIVES", 150, 0, BLUE, 1)
 85
 86 def beep(freq):
 87 global sound_cut
 88 tone.set_pitch(freq)
 89 tone.play()
 90 sound_cut = 50 # ms countdown
 91
 92 def check_buttons():
 93 global pad_v, n_lives, score
 94
 95 if buttons.is_pressed(BTN_L):
 96 pad_v = -pad_speed
 97 elif buttons.is_pressed(BTN_B):
 98 pad_v = +pad_speed
 99 else:
100 pad_v = 0 # Stop
101
102 if n_lives == 0 and buttons.is_pressed(BTN_U):
103 n_lives = START_LIVES + 1
104 score = 0
105
106 def new_ball():
107 global n_lives, serve_timer
108 n_lives = n_lives - 1
109 update_score()
110 if n_lives > 0:
111 serve_timer = 2000
112 show_message("Serving...", "Get Ready!", GREEN)
113 else:
114 show_message("Game Over!", "U = play again", RED)
115
116 def update_score():
117 display.fill_rect(45, 0, 100, 20, BLACK)
118 display.draw_text(str(score), 45, 0, WHITE, 2)
119 display.fill_rect(195, 0, 45, 20, BLACK)
120 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
121
122 def clear_message():
123 display.fill_rect(1, 120, 238, 80, BLACK)
124

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 245 of 295

125 def show_message(banner, note, color):
126 clear_message()
127 display.draw_text(banner, 30, 120, color, 3)
128 display.draw_text(note, 30, 160, WHITE, 2)
129
130 def hit_ball(angle):
131 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
132 angle = angle * math.pi / 180
133 ball_v[0] = math.cos(angle) * ball_speed
134 ball_v[1] = -math.sin(angle) * ball_speed
135
136 # Removed function def brick_row()
137 # Removed function def draw_bricks()

138
139 def setup_bricks():
140 global bricks
141 bricks = [] # Empty matrix (list of rows)
142 for i in range(BRICKS_DOWN):
143 bricks.append([]) # Empty row (list of columns)
144 for j in range(BRICKS_ACROSS):
145 bricks[i].append(True) # Add column to this row
146 brick_place(i, j, BRICK_COLORS[i])

147
148 def brick_place(i, j, color):
149 """Draw a brick at the given row,column matrix location"""
150 x = BRICKS_X_START + j * COL_W + BALL_SZ
151 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
152 display.fill_rect(x, y, BRICK_W, BRICK_H, color)

153
154 setup_bricks()
155
156 # Removed bricks test / print
157 # Removed draw_bricks()

158
159 draw_screen_layout()
160 new_ball()
161 draw_paddle()
162
163 ms = time.ticks_ms()
164
165 while True:

Delete your prototype functions.

Don't cry. They have served you well.
Thank them, and send them to the bit bucket!

You're already looping over each brick location!

Just add brick_place() to your inner loop.
Notice how this uses the row to select a color from BRICK_COLORS.

A function to draw a brick right where you want it!

Just a little math to convert a column to X, and a row to Y.
The multiply happens first, based on the precedence rules.

Consider the X calculation:

1. Start at the left edge: BRICKS_X_START.
2. Move across the screen to the specified column: j * COL_W.
3. Jump over the gap: BALL_SZ.

Remove the test code AND The call to draw_bricks()

Your setup_bricks() function is doing the work now!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 246 of 295

166 dt = elapsed_ms()
167 check_buttons()
168
169 # Update paddle
170 if pad_v:
171 pad_pos = pad_pos + pad_v * dt
172 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
173 draw_paddle()
174
175 # Check sound timer
176 if sound_cut > 0:
177 sound_cut = sound_cut - dt
178 if sound_cut <= 0:
179 tone.stop()
180
181 # Check serve timer
182 if serve_timer > 0:
183 serve_timer = serve_timer - dt
184 if serve_timer <= 0:
185 serve_ball()
186 else:
187 continue
188
189 if n_lives == 0:
190 continue
191
192 # Update ball
193 x, y = ball_pos
194 x = x + ball_v[0] * dt
195 y = y + ball_v[1] * dt
196
197 # Check for collision with walls
198 collision = False
199 if x <= 1 or 240 > x >= 239 - BALL_SZ:
200 collision = True
201 beep(SIDES_TONE)
202 ball_v[0] = ball_v[0] * -1
203 if y <= TOP_WALL + 1:
204 collision = True
205 beep(TOP_TONE)
206 ball_v[1] = ball_v[1] * -1
207 elif y > 240:
208 new_ball()
209
210 # Check for collision with paddle
211 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
212 # Calculate ball position relative to paddle
213 pad_ball = x + BALL_SZ - pad_pos
214 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
215 if hit:
216 # Bounce direction based on paddle position
217 center = (PADDLE_W + BALL_SZ) / 2
218 pad_ratio = (pad_ball - center) / center # range -1 to +1
219 angle = 90 - 60 * pad_ratio
220 hit_ball(angle)
221
222 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
223 beep(PADDLE_TONE)
224 collision = True
225 score = score + 1
226 update_score()
227
228 # Draw ball
229 if not collision:
230 ball_pos = (x, y)
231 draw_ball()
232
233

Hints:

The Hard Part
At this point you're having to THINK about how the game is going to work!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 247 of 295

The hard part is NOT that you're learning new Python concepts. It is more about thinking through the logical
decisions at each step as the game runs.

Take your time, and review the diagrams in this Objective. Go back to the previous Objective if needed. On paper, test different
values of (x,y) for the ball position, and calculate what (i,j) that would be in the matrix.

Always Hard, But Glorious

Any software application you build will present its own set of challenges. Often you will have to stop, scribble some notes down,
draw some diagrams, and walk away to ruminate about the solution. The approach I'm showing you here for Breakout is no
different. Several sketches and different approaches were considered, before landing on the method described here.

A great joy of software engineering is the feeling of discovering a nice solution to a tricky problem. The fact that it's hard makes
overcoming it even more gratifying!

(x, y) versus (i, j)
When you're plotting points on a 2D graph, it's very common to use X and Y coordinates.

Same goes for plotting pixels on the screen!

X is horizontal (across), and Y is vertical (down)

And those coordinates are always in (x,y) order like: set_pixel(x, y, color)

But dealing with a matrix, the order is different!

You specify the row first, then the column.

The location of an item in the matrix is specified by the pair (i, j).

i=row, and j=column

In Python you would write: bricks[i][j]

Together in Harmony!

When you think about the direction: X → j , and Y → i

Moving the ball in X crosses the columns, j.

Moving the ball in Y crosses the rows, i.

Goals:

Create constants for the brick width, height, and other dimensions shown in the diagram. Use the variable names in the
CodeTrek

Define a function def brick_place(i, j, color): that draws a brick at the specified matrix location.

Call the new brick_place() function inside setup_bricks() to draw the bricks as you build the matrix.

Remove the test code that prints the matrix, and remove the call to draw_bricks().

Delete your prototype functions def draw_bricks() and def brick_row().

Tools Found: Constants, Functions, Variables, tuple, Math Operators

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 248 of 295

 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21
 22 # Paddle state
 23 pad_speed = 0.28 # 280px / 1000ms
 24 pad_pos = 110.0 # Paddle X position
 25 pad_pix = 100
 26
 27 # Game state
 28 START_LIVES = 3 # Lives remaining at start of game
 29 score = 0
 30 n_lives = START_LIVES + 1
 31 serve_timer = 2000
 32 ball_speed = 0.15 # 150 pixels per second
 33
 34 # Bricks
 35 BRICKS_ACROSS = 10
 36 BRICKS_DOWN = 8
 37 BRICK_W = 20
 38 BRICK_H = 6
 39 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first column
 40 BRICKS_Y_START = 30
 41 COL_W = BRICK_W + BALL_SZ
 42 ROW_H = BRICK_H + BALL_SZ
 43 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row #@1
 44
 45 def draw_paddle():
 46 global pad_pix
 47 pix = round(pad_pos)
 48 if pix != pad_pix:
 49 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 50 pad_pix = pix
 51 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 52
 53 def draw_ball():
 54 global ball_pix
 55 pix = (round(ball_pos[0]), round(ball_pos[1]))
 56 if pix != ball_pix:
 57 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 58 ball_pix = pix
 59 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 60
 61 def serve_ball():
 62 global ball_pos, ball_v, ball_pix
 63 # Set ball_v: serve toward paddle
 64 ball_v = [0,0]
 65 angle = random.randrange(-60, -120, -1)
 66 hit_ball(angle)
 67 ball_pos = (120.0, 120.0)
 68 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 69 clear_message()
 70
 71 def elapsed_ms():
 72 """Returns milliseconds elapsed since last called"""
 73 global ms
 74 now = time.ticks_ms()
 75 diff = time.ticks_diff(now, ms)
 76 ms = now
 77 return diff
 78
 79 def draw_screen_layout():
 80 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 81 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 82 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 83 display.draw_text("SCORE", 4, 0, BLUE, 1)
 84 display.draw_text("LIVES", 150, 0, BLUE, 1)
 85

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 249 of 295

 86 def beep(freq):
 87 global sound_cut
 88 tone.set_pitch(freq)
 89 tone.play()
 90 sound_cut = 50 # ms countdown
 91
 92 def check_buttons():
 93 global pad_v, n_lives, score
 94
 95 if buttons.is_pressed(BTN_L):
 96 pad_v = -pad_speed
 97 elif buttons.is_pressed(BTN_B):
 98 pad_v = +pad_speed
 99 else:
100 pad_v = 0 # Stop
101
102 if n_lives == 0 and buttons.is_pressed(BTN_U):
103 n_lives = START_LIVES + 1
104 score = 0
105
106 def new_ball():
107 global n_lives, serve_timer
108 n_lives = n_lives - 1
109 update_score()
110 if n_lives > 0:
111 serve_timer = 2000
112 show_message("Serving...", "Get Ready!", GREEN)
113 else:
114 show_message("Game Over!", "U = play again", RED)
115
116 def update_score():
117 display.fill_rect(45, 0, 100, 20, BLACK)
118 display.draw_text(str(score), 45, 0, WHITE, 2)
119 display.fill_rect(195, 0, 45, 20, BLACK)
120 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
121
122 def clear_message():
123 display.fill_rect(1, 120, 238, 80, BLACK)
124
125 def show_message(banner, note, color):
126 clear_message()
127 display.draw_text(banner, 30, 120, color, 3)
128 display.draw_text(note, 30, 160, WHITE, 2)
129
130 def hit_ball(angle):
131 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
132 angle = angle * math.pi / 180
133 ball_v[0] = math.cos(angle) * ball_speed
134 ball_v[1] = -math.sin(angle) * ball_speed
135
136 # Removed function def brick_row()
137 # Removed function def draw_bricks() #@5
138
139 def setup_bricks():
140 global bricks
141 bricks = [] # Empty matrix (list of rows)
142 for i in range(BRICKS_DOWN):
143 bricks.append([]) # Empty row (list of columns)
144 for j in range(BRICKS_ACROSS):
145 bricks[i].append(True) # Add column to this row
146 brick_place(i, j, BRICK_COLORS[i]) #@3
147
148 def brick_place(i, j, color):
149 """Draw a brick at the given row,column matrix location"""
150 x = BRICKS_X_START + j * COL_W + BALL_SZ
151 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
152 display.fill_rect(x, y, BRICK_W, BRICK_H, color) #@2
153
154 setup_bricks()
155
156 # Removed bricks test / print
157 # Removed draw_bricks() #@4
158
159 draw_screen_layout()
160 new_ball()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 250 of 295

161 draw_paddle()
162
163 ms = time.ticks_ms()
164
165 while True:
166 dt = elapsed_ms()
167 check_buttons()
168
169 # Update paddle
170 if pad_v:
171 pad_pos = pad_pos + pad_v * dt
172 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
173 draw_paddle()
174
175 # Check sound timer
176 if sound_cut > 0:
177 sound_cut = sound_cut - dt
178 if sound_cut <= 0:
179 tone.stop()
180
181 # Check serve timer
182 if serve_timer > 0:
183 serve_timer = serve_timer - dt
184 if serve_timer <= 0:
185 serve_ball()
186 else:
187 continue
188
189 if n_lives == 0:
190 continue
191
192 # Update ball
193 x, y = ball_pos
194 x = x + ball_v[0] * dt
195 y = y + ball_v[1] * dt
196
197 # Check for collision with walls
198 collision = False
199 if x <= 1 or 240 > x >= 239 - BALL_SZ:
200 collision = True
201 beep(SIDES_TONE)
202 ball_v[0] = ball_v[0] * -1
203 if y <= TOP_WALL + 1:
204 collision = True
205 beep(TOP_TONE)
206 ball_v[1] = ball_v[1] * -1
207 elif y > 240:
208 new_ball()
209
210 # Check for collision with paddle
211 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
212 # Calculate ball position relative to paddle
213 pad_ball = x + BALL_SZ - pad_pos
214 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
215 if hit:
216 # Bounce direction based on paddle position
217 center = (PADDLE_W + BALL_SZ) / 2
218 pad_ratio = (pad_ball - center) / center # range -1 to +1
219 angle = 90 - 60 * pad_ratio
220 hit_ball(angle)
221
222 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
223 beep(PADDLE_TONE)
224 collision = True
225 score = score + 1
226 update_score()
227
228 # Draw ball
229 if not collision:
230 ball_pos = (x, y)
231 draw_ball()
232
233

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 251 of 295

Objective 4 - Collision!

Smash!
You're all set now to detect when the ball hits a brick, and take action!

All you have to do is convert the ball's x, y pixel position to an i, j matrix location. Then consult your bricks matrix: it will tell you
True or False whether a brick is there or not!

At this point just focus on detecting the collision and removing the brick when it has been hit. Later you'll bounce the ball off the brick,
but for now allow it to cruise on.

Check the 'Trek!

Watch out for some changes you may need to make for code to run without error.

Run It!

This game is kinda fun as-is! Blast some bricks!

Can you clear them all?

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21 BRICK_TONE = 740
 22
 23 # Paddle state
 24 pad_speed = 0.28 # 280px / 1000ms
 25 pad_pos = 110.0 # Paddle X position
 26 pad_pix = 100
 27
 28 # Game state
 29 START_LIVES = 3 # Lives remaining at start of game
 30 score = 0
 31 n_lives = START_LIVES + 1
 32 serve_timer = 2000
 33 ball_speed = 0.15 # 150 pixels per second
 34
 35 # Bricks
 36 BRICKS_ACROSS = 10
 37 BRICKS_DOWN = 8
 38 BRICK_W = 20
 39 BRICK_H = 6
 40 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 41 BRICKS_Y_START = 30
 42 COL_W = BRICK_W + BALL_SZ
 43 ROW_H = BRICK_H + BALL_SZ
 44 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 252 of 295

 45
 46 def draw_paddle():
 47 global pad_pix
 48 pix = round(pad_pos)
 49 if pix != pad_pix:
 50 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 51 pad_pix = pix
 52 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 53
 54 def draw_ball():
 55 global ball_pix
 56 pix = (round(ball_pos[0]), round(ball_pos[1]))
 57 if pix != ball_pix:
 58 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 59 ball_pix = pix
 60 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 61
 62 def serve_ball():
 63 global ball_pos, ball_v, ball_pix
 64 # Set ball_v: serve toward paddle
 65 ball_v = [0,0]
 66 angle = random.randrange(-60, -120, -1)
 67 hit_ball(angle)
 68 ball_pos = (120.0, 120.0)
 69 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 70 clear_message()
 71
 72 def elapsed_ms():
 73 """Returns milliseconds elapsed since last called"""
 74 global ms
 75 now = time.ticks_ms()
 76 diff = time.ticks_diff(now, ms)
 77 ms = now
 78 return diff
 79
 80 def draw_screen_layout():
 81 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 82 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 83 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 84 display.draw_text("SCORE", 4, 0, BLUE, 1)
 85 display.draw_text("LIVES", 150, 0, BLUE, 1)
 86
 87 def beep(freq):
 88 global sound_cut
 89 tone.set_pitch(freq)
 90 tone.play()
 91 sound_cut = 50 # ms countdown
 92
 93 def check_buttons():
 94 global pad_v, n_lives, score
 95
 96 if buttons.is_pressed(BTN_L):
 97 pad_v = -pad_speed
 98 elif buttons.is_pressed(BTN_B):
 99 pad_v = +pad_speed
100 else:
101 pad_v = 0 # Stop
102
103 if n_lives == 0 and buttons.is_pressed(BTN_U):
104 n_lives = START_LIVES + 1
105 score = 0
106
107 def new_ball():
108 global n_lives, serve_timer
109 n_lives = n_lives - 1
110 update_score()
111 if n_lives > 0:
112 serve_timer = 2000
113 show_message("Serving...", "Get Ready!", GREEN)
114 else:
115 show_message("Game Over!", "U = play again", RED)
116
117 def update_score():
118 display.fill_rect(45, 0, 100, 20, BLACK)
119 display.draw_text(str(score), 45, 0, WHITE, 2)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 253 of 295

120 display.fill_rect(195, 0, 45, 20, BLACK)
121 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
122
123 def clear_message():
124 display.fill_rect(1, 120, 238, 80, BLACK)
125
126 def show_message(banner, note, color):
127 clear_message()
128 display.draw_text(banner, 30, 120, color, 3)
129 display.draw_text(note, 30, 160, WHITE, 2)
130
131 def hit_ball(angle):
132 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
133 angle = angle * math.pi / 180
134 ball_v[0] = math.cos(angle) * ball_speed
135 ball_v[1] = -math.sin(angle) * ball_speed
136
137 def setup_bricks():
138 global bricks
139 bricks = [] # Empty matrix (list of rows)
140 for i in range(BRICKS_DOWN):
141 bricks.append([]) # Empty row (list of columns)
142 for j in range(BRICKS_ACROSS):
143 bricks[i].append(True) # Add column to this row
144 brick_place(i, j, BRICK_COLORS[i])
145
146 def brick_place(i, j, color):
147 """Draw a brick at the given row,column matrix location"""
148 x = BRICKS_X_START + j * COL_W + BALL_SZ
149 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
150 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
151
152 def check_bricks(x, y):
153 """Check for ball collision, return 'collided' True/False"""
154 collided = False
155
156 # Calculate row and column based on ball x,y
157 i = (y - BRICKS_Y_START) / ROW_H # row
158 j = (x - BRICKS_X_START) / COL_W # column
159 # TODO: Modify above to truncate i and j to int

160
161 # Is ball inside the brick grid?
162 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
163 collided = bricks[i][j] # Is there a brick here?

164

Begin your check_bricks() function by calculating which grid square
the ball is in.

The grid divides the brick area into COL_W x ROW_H pixel sections.
Calculate i by dividing y 's position in the grid by ROW_H.

...same thing for j, using x and COL_W.

You're gonna need a little more code here, if you plan
to use i and j to index lists.
They have to be converted to int, right?

Is the ball inside the grid?

Hey, if the ball is down near the bottom of the screen then there's
no point checking any further!

Isn't it cool how Python comparison lets you check the lower and upper range of a variable?
And the logical operator and makes this code so readable!

Colliding?

If it's in the grid, let the matrix do the work! Just grab the bool corresponding
to this brick (i, j) and you have your answer!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 254 of 295

165 if collided:
166 # Destroy brick
167 bricks[i][j] = False
168 brick_place(i, j, BLACK) # Erase
169 beep(BRICK_TONE)
170
171 return collided

172
173 setup_bricks()
174 draw_screen_layout()
175 new_ball()
176 draw_paddle()
177
178 ms = time.ticks_ms()
179
180 while True:
181 dt = elapsed_ms()
182 check_buttons()
183
184 # Update paddle
185 if pad_v:
186 pad_pos = pad_pos + pad_v * dt
187 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
188 draw_paddle()
189
190 # Check sound timer
191 if sound_cut > 0:
192 sound_cut = sound_cut - dt
193 if sound_cut <= 0:
194 tone.stop()
195
196 # Check serve timer
197 if serve_timer > 0:
198 serve_timer = serve_timer - dt
199 if serve_timer <= 0:
200 serve_ball()
201 else:
202 continue
203
204 if n_lives == 0:
205 continue
206
207 # Update ball
208 x, y = ball_pos
209 x = x + ball_v[0] * dt
210 y = y + ball_v[1] * dt
211
212 # Check for collision with walls
213 collision = False
214 if x <= 1 or 240 > x >= 239 - BALL_SZ:
215 collision = True
216 beep(SIDES_TONE)
217 ball_v[0] = ball_v[0] * -1
218 if y <= TOP_WALL + 1:
219 collision = True
220 beep(TOP_TONE)
221 ball_v[1] = ball_v[1] * -1
222 elif y > 240:
223 new_ball()
224
225 # Check for collision with paddle
226 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
227 # Calculate ball position relative to paddle
228 pad_ball = x + BALL_SZ - pad_pos
229 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
230 if hit:

Destructo!
Erase this brick, and flag it as destroyed in the matrix.

A satisfying "beep" will increase the joy!
You did define a BRICK_TONE constant near the top of the file, right?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 255 of 295

231 # Bounce direction based on paddle position
232 center = (PADDLE_W + BALL_SZ) / 2
233 pad_ratio = (pad_ball - center) / center # range -1 to +1
234 angle = 90 - 60 * pad_ratio
235 hit_ball(angle)
236
237 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
238 beep(PADDLE_TONE)
239 collision = True
240 score = score + 1
241 update_score()
242
243 if not collision:
244 collision = check_bricks(x, y)

245
246 # Draw ball
247 if not collision:
248 ball_pos = (x, y)
249 draw_ball()
250
251

Hint:

Type Conversion
Are you running into an error using i and j to index the bricks matrix?

The code below shows an example of what's needed. You'll need to do this for both i and j. Note that the parentheses
surround the whole calculation!

Calculate i, truncating the value to an integer.
i = int((y - BRICKS_Y_START) / ROW_H) # row

Goals:

Define a new function def check_bricks(x, y) that takes the current ball coordinates as arguments and returns a bool
indicating whether it collided with a brick or not.

Call the check_bricks(x, y) function inside your game loop.

Tools
Found:

bool, Keyword and Positional Arguments, Parameters, Arguments, and Returns, list, int, Comparison Operators, Logical
Operators, Constants

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds

One more collision check!

If the ball already collided with a wall or paddle then there's no need to check
the bricks.
Otherwise, here's where you check!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 256 of 295

 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21 BRICK_TONE = 740
 22
 23 # Paddle state
 24 pad_speed = 0.28 # 280px / 1000ms
 25 pad_pos = 110.0 # Paddle X position
 26 pad_pix = 100
 27
 28 # Game state
 29 START_LIVES = 3 # Lives remaining at start of game
 30 score = 0
 31 n_lives = START_LIVES + 1
 32 serve_timer = 2000
 33 ball_speed = 0.15 # 150 pixels per second
 34
 35 # Bricks
 36 BRICKS_ACROSS = 10
 37 BRICKS_DOWN = 8
 38 BRICK_W = 20
 39 BRICK_H = 6
 40 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 41 BRICKS_Y_START = 30
 42 COL_W = BRICK_W + BALL_SZ
 43 ROW_H = BRICK_H + BALL_SZ
 44 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row
 45
 46 def draw_paddle():
 47 global pad_pix
 48 pix = round(pad_pos)
 49 if pix != pad_pix:
 50 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 51 pad_pix = pix
 52 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 53
 54 def draw_ball():
 55 global ball_pix
 56 pix = (round(ball_pos[0]), round(ball_pos[1]))
 57 if pix != ball_pix:
 58 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 59 ball_pix = pix
 60 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 61
 62 def serve_ball():
 63 global ball_pos, ball_v, ball_pix
 64 # Set ball_v: serve toward paddle
 65 ball_v = [0,0]
 66 angle = random.randrange(-60, -120, -1)
 67 hit_ball(angle)
 68 ball_pos = (120.0, 120.0)
 69 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 70 clear_message()
 71
 72 def elapsed_ms():
 73 """Returns milliseconds elapsed since last called"""
 74 global ms
 75 now = time.ticks_ms()
 76 diff = time.ticks_diff(now, ms)
 77 ms = now
 78 return diff
 79
 80 def draw_screen_layout():
 81 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 82 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 83 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 84 display.draw_text("SCORE", 4, 0, BLUE, 1)
 85 display.draw_text("LIVES", 150, 0, BLUE, 1)
 86
 87 def beep(freq):
 88 global sound_cut
 89 tone.set_pitch(freq)
 90 tone.play()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 257 of 295

 91 sound_cut = 50 # ms countdown
 92
 93 def check_buttons():
 94 global pad_v, n_lives, score
 95
 96 if buttons.is_pressed(BTN_L):
 97 pad_v = -pad_speed
 98 elif buttons.is_pressed(BTN_B):
 99 pad_v = +pad_speed
100 else:
101 pad_v = 0 # Stop
102
103 if n_lives == 0 and buttons.is_pressed(BTN_U):
104 n_lives = START_LIVES + 1
105 score = 0
106
107 def new_ball():
108 global n_lives, serve_timer
109 n_lives = n_lives - 1
110 update_score()
111 if n_lives > 0:
112 serve_timer = 2000
113 show_message("Serving...", "Get Ready!", GREEN)
114 else:
115 show_message("Game Over!", "U = play again", RED)
116
117 def update_score():
118 display.fill_rect(45, 0, 100, 20, BLACK)
119 display.draw_text(str(score), 45, 0, WHITE, 2)
120 display.fill_rect(195, 0, 45, 20, BLACK)
121 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
122
123 def clear_message():
124 display.fill_rect(1, 120, 238, 80, BLACK)
125
126 def show_message(banner, note, color):
127 clear_message()
128 display.draw_text(banner, 30, 120, color, 3)
129 display.draw_text(note, 30, 160, WHITE, 2)
130
131 def hit_ball(angle):
132 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
133 angle = angle * math.pi / 180
134 ball_v[0] = math.cos(angle) * ball_speed
135 ball_v[1] = -math.sin(angle) * ball_speed
136
137 def setup_bricks():
138 global bricks
139 bricks = [] # Empty matrix (list of rows)
140 for i in range(BRICKS_DOWN):
141 bricks.append([]) # Empty row (list of columns)
142 for j in range(BRICKS_ACROSS):
143 bricks[i].append(True) # Add column to this row
144 brick_place(i, j, BRICK_COLORS[i])
145
146 def brick_place(i, j, color):
147 """Draw a brick at the given row,column matrix location"""
148 x = BRICKS_X_START + j * COL_W + BALL_SZ
149 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
150 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
151
152 def check_bricks(x, y):
153 """Check for ball collision, return 'collided' True/False"""
154 collided = False
155
156 # Calculate row and column based on ball x,y
157 i = int((y - BRICKS_Y_START) / ROW_H) # row
158 j = int((x - BRICKS_X_START) / COL_W) # column
159
160 # Is ball inside the brick grid?
161 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
162 collided = bricks[i][j] # Is there a brick here?
163
164 if collided:
165 # Destroy brick

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 258 of 295

166 bricks[i][j] = False
167 brick_place(i, j, BLACK) # Erase
168 beep(BRICK_TONE)
169
170 return collided
171
172 setup_bricks()
173 draw_screen_layout()
174 new_ball()
175 draw_paddle()
176
177 ms = time.ticks_ms()
178
179 while True:
180 dt = elapsed_ms()
181 check_buttons()
182
183 # Update paddle
184 if pad_v:
185 pad_pos = pad_pos + pad_v * dt
186 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
187 draw_paddle()
188
189 # Check sound timer
190 if sound_cut > 0:
191 sound_cut = sound_cut - dt
192 if sound_cut <= 0:
193 tone.stop()
194
195 # Check serve timer
196 if serve_timer > 0:
197 serve_timer = serve_timer - dt
198 if serve_timer <= 0:
199 serve_ball()
200 else:
201 continue
202
203 if n_lives == 0:
204 continue
205
206 # Update ball
207 x, y = ball_pos
208 x = x + ball_v[0] * dt
209 y = y + ball_v[1] * dt
210
211 # Check for collision with walls
212 collision = False
213 if x <= 1 or 240 > x >= 239 - BALL_SZ:
214 collision = True
215 beep(SIDES_TONE)
216 ball_v[0] = ball_v[0] * -1
217 if y <= TOP_WALL + 1:
218 collision = True
219 beep(TOP_TONE)
220 ball_v[1] = ball_v[1] * -1
221 elif y > 240:
222 new_ball()
223
224 # Check for collision with paddle
225 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
226 # Calculate ball position relative to paddle
227 pad_ball = x + BALL_SZ - pad_pos
228 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
229 if hit:
230 # Bounce direction based on paddle position
231 center = (PADDLE_W + BALL_SZ) / 2
232 pad_ratio = (pad_ball - center) / center # range -1 to +1
233 angle = 90 - 60 * pad_ratio
234 hit_ball(angle)
235
236 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
237 beep(PADDLE_TONE)
238 collision = True
239 score = score + 1
240 update_score()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 259 of 295

241
242 if not collision:
243 collision = check_bricks(x, y)
244
245 # Draw ball
246 if not collision:
247 ball_pos = (x, y)
248 draw_ball()
249
250

Quiz 2 - Precedence

Question 1: What is the value of result after the following code runs?

result = 4 + 2 * 3 - 1

 9

 17

 12

 23

Question 2: What is the result of the following code?

my_list = [14, 16, 18]
result = my_list[1.5]

 TypeError

 IndexError

 16

 17

 18

Objective 5 - Bounce

Brick Breaking Rebound!
The ball needs to rebound when it destroys a brick.

You could treat bricks like a "top wall", and just bounce the Y coordinate.
Just reverse the ball's velocity ball_v[1] = ball_v[1] * -1

But sometimes the ball hits the side of a brick. Or the corner ! And it would be a shame not to have realistic physics.

Bounce X? Bounce Y? Both??

Right now your check_bricks() code only detects collided. That's ANY collision between the ball and a brick.

But you don't know which side of the brick was hit...
Yes, it matters! Bounce off the side should go sideways!
There are 4 sides to each brick. How are you going to figure out which side the ball hit?

The past is the path.

The moment when your check_bricks() function detects a collision, it means the ball has moved to a NEW (i, j) position in the matrix.

If you knew the OLD (i, j) position then you would know if the ball came from below, left, right, or above the brick!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 260 of 295

So, remembering the previous (i, j) is the key to better bouncing.

Bounce Rulez
Did the row change? → Reverse the Y velocity
Did the column change? → Reverse the X velocity

Life can only be understood backwards; but it must be lived forwards.
― Søren Kierkegaard

Check the 'Trek!

You're going to need a new global variable to remember the (i, j) position of the ball in the grid.

And each time your check_bricks() function updates that position, you'll have the previous i_prev and j_prev values in
case there's a collision!

Run It!

How's your bouncing?

Your ball should be bouncing off the bricks now.
Can you rebound from the side of a brick?

Make sure it's behaving the way a real ball would!

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21 BRICK_TONE = 740
 22
 23 # Paddle state
 24 pad_speed = 0.28 # 280px / 1000ms
 25 pad_pos = 110.0 # Paddle X position
 26 pad_pix = 100
 27
 28 # Game state
 29 START_LIVES = 3 # Lives remaining at start of game
 30 score = 0
 31 n_lives = START_LIVES + 1
 32 serve_timer = 2000
 33 ball_speed = 0.15 # 150 pixels per second
 34
 35 # Bricks
 36 BRICKS_ACROSS = 10
 37 BRICKS_DOWN = 8
 38 BRICK_W = 20
 39 BRICK_H = 6
 40 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 41 BRICKS_Y_START = 30

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 261 of 295

 42 COL_W = BRICK_W + BALL_SZ
 43 ROW_H = BRICK_H + BALL_SZ
 44 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row
 45
 46 def draw_paddle():
 47 global pad_pix
 48 pix = round(pad_pos)
 49 if pix != pad_pix:
 50 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 51 pad_pix = pix
 52 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 53
 54 def draw_ball():
 55 global ball_pix
 56 pix = (round(ball_pos[0]), round(ball_pos[1]))
 57 if pix != ball_pix:
 58 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 59 ball_pix = pix
 60 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 61
 62 def serve_ball():
 63 global ball_pos, ball_v, ball_pix
 64 # Set ball_v: serve toward paddle
 65 ball_v = [0,0]
 66 angle = random.randrange(-60, -120, -1)
 67 hit_ball(angle)
 68 ball_pos = (120.0, 120.0)
 69 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 70 clear_message()
 71
 72 def elapsed_ms():
 73 """Returns milliseconds elapsed since last called"""
 74 global ms
 75 now = time.ticks_ms()
 76 diff = time.ticks_diff(now, ms)
 77 ms = now
 78 return diff
 79
 80 def draw_screen_layout():
 81 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 82 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 83 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 84 display.draw_text("SCORE", 4, 0, BLUE, 1)
 85 display.draw_text("LIVES", 150, 0, BLUE, 1)
 86
 87 def beep(freq):
 88 global sound_cut
 89 tone.set_pitch(freq)
 90 tone.play()
 91 sound_cut = 50 # ms countdown
 92
 93 def check_buttons():
 94 global pad_v, n_lives, score
 95
 96 if buttons.is_pressed(BTN_L):
 97 pad_v = -pad_speed
 98 elif buttons.is_pressed(BTN_B):
 99 pad_v = +pad_speed
100 else:
101 pad_v = 0 # Stop
102
103 if n_lives == 0 and buttons.is_pressed(BTN_U):
104 n_lives = START_LIVES + 1
105 score = 0
106
107 def new_ball():
108 global n_lives, serve_timer
109 n_lives = n_lives - 1
110 update_score()
111 if n_lives > 0:
112 serve_timer = 2000
113 show_message("Serving...", "Get Ready!", GREEN)
114 else:
115 show_message("Game Over!", "U = play again", RED)
116

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 262 of 295

117 def update_score():
118 display.fill_rect(45, 0, 100, 20, BLACK)
119 display.draw_text(str(score), 45, 0, WHITE, 2)
120 display.fill_rect(195, 0, 45, 20, BLACK)
121 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
122
123 def clear_message():
124 display.fill_rect(1, 120, 238, 80, BLACK)
125
126 def show_message(banner, note, color):
127 clear_message()
128 display.draw_text(banner, 30, 120, color, 3)
129 display.draw_text(note, 30, 160, WHITE, 2)
130
131 def hit_ball(angle):
132 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
133 angle = angle * math.pi / 180
134 ball_v[0] = math.cos(angle) * ball_speed
135 ball_v[1] = -math.sin(angle) * ball_speed
136
137 def setup_bricks():
138 global bricks, ball_brick
139 ball_brick = (0, 0) # Ball's previous (i,j) in brick matrix

140 bricks = [] # Empty matrix (list of rows)
141 for i in range(BRICKS_DOWN):
142 bricks.append([]) # Empty row (list of columns)
143 for j in range(BRICKS_ACROSS):
144 bricks[i].append(True) # Add column to this row
145 brick_place(i, j, BRICK_COLORS[i])
146
147 def brick_place(i, j, color):
148 """Draw a brick at the given row,column matrix location"""
149 x = BRICKS_X_START + j * COL_W + BALL_SZ
150 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
151 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
152
153 def check_bricks(x, y):
154 """Check for ball collision, return 'collided' True/False"""
155 global ball_brick
156 collided = False
157
158 # Calculate row and column based on ball x,y
159 i = int((y - BRICKS_Y_START) / ROW_H) # row
160 j = int((x - BRICKS_X_START) / COL_W) # column
161
162 # Get ball's previous i,j position
163 i_prev, j_prev = ball_brick
164 ball_brick = (i, j) # save for next time

165
166 # Is ball inside the brick grid?
167 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
168 collided = bricks[i][j] # Is there a brick here?
169
170 if collided:
171 # Destroy brick
172 bricks[i][j] = False
173 brick_place(i, j, BLACK) # Erase

Initialize the ball's last brick position.

Naming variables can be challenging. Sorry, ball_brick is all I've got!
Your check_bricks() function will update this global variable.
Make it a tuple holding the row and column of the ball when it's in the grid.

Retrieve the previous i and j saved in the ball_brick tuple.
Check out the unpacking assignment from the tuple into i_prev and j_prev.

Then save the new (i, j) ball position back in the global ball_brick.

Don't forget to declare your global ball_brick !

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 263 of 295

174 beep(BRICK_TONE)
175
176 # Bounce ball
177 if i != i_prev: # Row changed -> bounce Y
178 ball_v[1] = ball_v[1] * -1
179 if j != j_prev: # Column changed -> bounce X
180 ball_v[0] = ball_v[0] * -1

181
182 return collided
183
184 setup_bricks()
185 draw_screen_layout()
186 new_ball()
187 draw_paddle()
188
189 ms = time.ticks_ms()
190
191 while True:
192 dt = elapsed_ms()
193 check_buttons()
194
195 # Update paddle
196 if pad_v:
197 pad_pos = pad_pos + pad_v * dt
198 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
199 draw_paddle()
200
201 # Check sound timer
202 if sound_cut > 0:
203 sound_cut = sound_cut - dt
204 if sound_cut <= 0:
205 tone.stop()
206
207 # Check serve timer
208 if serve_timer > 0:
209 serve_timer = serve_timer - dt
210 if serve_timer <= 0:
211 serve_ball()
212 else:
213 continue
214
215 if n_lives == 0:
216 continue
217
218 # Update ball
219 x, y = ball_pos
220 x = x + ball_v[0] * dt
221 y = y + ball_v[1] * dt
222
223 # Check for collision with walls
224 collision = False
225 if x <= 1 or 240 > x >= 239 - BALL_SZ:
226 collision = True
227 beep(SIDES_TONE)
228 ball_v[0] = ball_v[0] * -1
229 if y <= TOP_WALL + 1:
230 collision = True
231 beep(TOP_TONE)
232 ball_v[1] = ball_v[1] * -1
233 elif y > 240:
234 new_ball()
235
236 # Check for collision with paddle
237 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
238 # Calculate ball position relative to paddle
239 pad_ball = x + BALL_SZ - pad_pos

Add bouncing to your collision handler!

If the row changed, bounce Y.
If the column changed, bounce X.

If neither changed you wouldn't be here, would you?

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 264 of 295

240 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
241 if hit:
242 # Bounce direction based on paddle position
243 center = (PADDLE_W + BALL_SZ) / 2
244 pad_ratio = (pad_ball - center) / center # range -1 to +1
245 angle = 90 - 60 * pad_ratio
246 hit_ball(angle)
247
248 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
249 beep(PADDLE_TONE)
250 collision = True
251 score = score + 1
252 update_score()
253
254 if not collision:
255 collision = check_bricks(x, y)
256
257 # Draw ball
258 if not collision:
259 ball_pos = (x, y)
260 draw_ball()
261
262

Goals:

Initialize a new global variable in your setup_bricks() function, that holds the previous (i, j) position of the ball in the bricks
grid. Your new global should be a tuple initialized to (0, 0).

In check_bricks() unpack this tuple to variables i_prev and j_prev, then update it with the new (i, j) position.

Add bouncing to your collision handling code in check_bricks()

Tools Found: Locals and Globals, tuple, Assignment, Variables

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21 BRICK_TONE = 740
 22
 23 # Paddle state
 24 pad_speed = 0.28 # 280px / 1000ms
 25 pad_pos = 110.0 # Paddle X position
 26 pad_pix = 100
 27
 28 # Game state
 29 START_LIVES = 3 # Lives remaining at start of game
 30 score = 0
 31 n_lives = START_LIVES + 1
 32 serve_timer = 2000
 33 ball_speed = 0.15 # 150 pixels per second
 34

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 265 of 295

 35 # Bricks
 36 BRICKS_ACROSS = 10
 37 BRICKS_DOWN = 8
 38 BRICK_W = 20
 39 BRICK_H = 6
 40 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 41 BRICKS_Y_START = 30
 42 COL_W = BRICK_W + BALL_SZ
 43 ROW_H = BRICK_H + BALL_SZ
 44 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row
 45
 46 def draw_paddle():
 47 global pad_pix
 48 pix = round(pad_pos)
 49 if pix != pad_pix:
 50 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 51 pad_pix = pix
 52 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 53
 54 def draw_ball():
 55 global ball_pix
 56 pix = (round(ball_pos[0]), round(ball_pos[1]))
 57 if pix != ball_pix:
 58 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 59 ball_pix = pix
 60 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 61
 62 def serve_ball():
 63 global ball_pos, ball_v, ball_pix
 64 # Set ball_v: serve toward paddle
 65 ball_v = [0,0]
 66 angle = random.randrange(-60, -120, -1)
 67 hit_ball(angle)
 68 ball_pos = (120.0, 120.0)
 69 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 70 clear_message()
 71
 72 def elapsed_ms():
 73 """Returns milliseconds elapsed since last called"""
 74 global ms
 75 now = time.ticks_ms()
 76 diff = time.ticks_diff(now, ms)
 77 ms = now
 78 return diff
 79
 80 def draw_screen_layout():
 81 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 82 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 83 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 84 display.draw_text("SCORE", 4, 0, BLUE, 1)
 85 display.draw_text("LIVES", 150, 0, BLUE, 1)
 86
 87 def beep(freq):
 88 global sound_cut
 89 tone.set_pitch(freq)
 90 tone.play()
 91 sound_cut = 50 # ms countdown
 92
 93 def check_buttons():
 94 global pad_v, n_lives, score
 95
 96 if buttons.is_pressed(BTN_L):
 97 pad_v = -pad_speed
 98 elif buttons.is_pressed(BTN_B):
 99 pad_v = +pad_speed
100 else:
101 pad_v = 0 # Stop
102
103 if n_lives == 0 and buttons.is_pressed(BTN_U):
104 n_lives = START_LIVES + 1
105 score = 0
106
107 def new_ball():
108 global n_lives, serve_timer
109 n_lives = n_lives - 1

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 266 of 295

110 update_score()
111 if n_lives > 0:
112 serve_timer = 2000
113 show_message("Serving...", "Get Ready!", GREEN)
114 else:
115 show_message("Game Over!", "U = play again", RED)
116
117 def update_score():
118 display.fill_rect(45, 0, 100, 20, BLACK)
119 display.draw_text(str(score), 45, 0, WHITE, 2)
120 display.fill_rect(195, 0, 45, 20, BLACK)
121 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
122
123 def clear_message():
124 display.fill_rect(1, 120, 238, 80, BLACK)
125
126 def show_message(banner, note, color):
127 clear_message()
128 display.draw_text(banner, 30, 120, color, 3)
129 display.draw_text(note, 30, 160, WHITE, 2)
130
131 def hit_ball(angle):
132 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
133 angle = angle * math.pi / 180
134 ball_v[0] = math.cos(angle) * ball_speed
135 ball_v[1] = -math.sin(angle) * ball_speed
136
137 def setup_bricks():
138 global bricks, ball_brick
139 ball_brick = (0, 0) # Ball's previous (i,j) in brick matrix
140 bricks = [] # Empty matrix (list of rows)
141 for i in range(BRICKS_DOWN):
142 bricks.append([]) # Empty row (list of columns)
143 for j in range(BRICKS_ACROSS):
144 bricks[i].append(True) # Add column to this row
145 brick_place(i, j, BRICK_COLORS[i])
146
147 def brick_place(i, j, color):
148 """Draw a brick at the given row,column matrix location"""
149 x = BRICKS_X_START + j * COL_W + BALL_SZ
150 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
151 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
152
153 def check_bricks(x, y):
154 """Check for ball collision, return 'collided' True/False"""
155 global ball_brick
156 collided = False
157
158 # Calculate row and column based on ball x,y
159 i = int((y - BRICKS_Y_START) / ROW_H) # row
160 j = int((x - BRICKS_X_START) / COL_W) # column
161
162 # Get ball's previous i,j position
163 i_prev, j_prev = ball_brick
164 ball_brick = (i, j) # save for next time
165
166 # Is ball inside the brick grid?
167 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
168 collided = bricks[i][j] # Is there a brick here?
169
170 if collided:
171 # Destroy brick
172 bricks[i][j] = False
173 brick_place(i, j, BLACK) # Erase
174 beep(BRICK_TONE)
175
176 # Bounce ball
177 if i != i_prev: # Row changed -> bounce Y
178 ball_v[1] = ball_v[1] * -1
179 if j != j_prev: # Column changed -> bounce X
180 ball_v[0] = ball_v[0] * -1
181
182 return collided
183
184 setup_bricks()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 267 of 295

185 draw_screen_layout()
186 new_ball()
187 draw_paddle()
188
189 ms = time.ticks_ms()
190
191 while True:
192 dt = elapsed_ms()
193 check_buttons()
194
195 # Update paddle
196 if pad_v:
197 pad_pos = pad_pos + pad_v * dt
198 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
199 draw_paddle()
200
201 # Check sound timer
202 if sound_cut > 0:
203 sound_cut = sound_cut - dt
204 if sound_cut <= 0:
205 tone.stop()
206
207 # Check serve timer
208 if serve_timer > 0:
209 serve_timer = serve_timer - dt
210 if serve_timer <= 0:
211 serve_ball()
212 else:
213 continue
214
215 if n_lives == 0:
216 continue
217
218 # Update ball
219 x, y = ball_pos
220 x = x + ball_v[0] * dt
221 y = y + ball_v[1] * dt
222
223 # Check for collision with walls
224 collision = False
225 if x <= 1 or 240 > x >= 239 - BALL_SZ:
226 collision = True
227 beep(SIDES_TONE)
228 ball_v[0] = ball_v[0] * -1
229 if y <= TOP_WALL + 1:
230 collision = True
231 beep(TOP_TONE)
232 ball_v[1] = ball_v[1] * -1
233 elif y > 240:
234 new_ball()
235
236 # Check for collision with paddle
237 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
238 # Calculate ball position relative to paddle
239 pad_ball = x + BALL_SZ - pad_pos
240 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
241 if hit:
242 # Bounce direction based on paddle position
243 center = (PADDLE_W + BALL_SZ) / 2
244 pad_ratio = (pad_ball - center) / center # range -1 to +1
245 angle = 90 - 60 * pad_ratio
246 hit_ball(angle)
247
248 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
249 beep(PADDLE_TONE)
250 collision = True
251 score = score + 1
252 update_score()
253
254 if not collision:
255 collision = check_bricks(x, y)
256
257 # Draw ball
258 if not collision:
259 ball_pos = (x, y)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 268 of 295

260 draw_ball()
261
262

Objective 6 - Gamify

Gamification Time
Okay, it's time to add scoring for the bricks, and make sure everything is reset properly when the player restarts after game-over.

Review the Code

Now is a good time to review your code, and make sure you understand everything that's going on.

Take time to reflect on each section of code.
Remember when you added each feature, and what its purpose was.
As you do this, add some comments !

Be sure to note things that might be confusing to someone reading this code.
If it confused you, definitely comment it!

Check the 'Trek!

This one is pretty straightforward. Go forth and gamify!

Run It!

Play the game a bit, and make sure the score is increasing as expected.

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21 BRICK_TONE = 740
 22
 23 # Paddle state
 24 pad_speed = 0.28 # 280px / 1000ms
 25 pad_pos = 110.0 # Paddle X position
 26 pad_pix = 100
 27
 28 # Game state
 29 START_LIVES = 3 # Lives remaining at start of game
 30 score = 0
 31 n_lives = START_LIVES + 1
 32 serve_timer = 2000
 33 ball_speed = 0.15 # 150 pixels per second
 34
 35 # Bricks
 36 BRICKS_ACROSS = 10
 37 BRICKS_DOWN = 8

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 269 of 295

 38 BRICK_W = 20
 39 BRICK_H = 6
 40 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 41 BRICKS_Y_START = 30
 42 COL_W = BRICK_W + BALL_SZ
 43 ROW_H = BRICK_H + BALL_SZ
 44 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row
 45 BRICK_POINTS = (7, 7, 3, 3, 5, 5, 1, 1)

 46
 47 def draw_paddle():
 48 global pad_pix
 49 pix = round(pad_pos)
 50 if pix != pad_pix:
 51 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 52 pad_pix = pix
 53 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 54
 55 def draw_ball():
 56 global ball_pix
 57 pix = (round(ball_pos[0]), round(ball_pos[1]))
 58 if pix != ball_pix:
 59 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 60 ball_pix = pix
 61 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 62
 63 def serve_ball():
 64 global ball_pos, ball_v, ball_pix
 65 # Set ball_v: serve toward paddle
 66 ball_v = [0,0]
 67 angle = random.randrange(-60, -120, -1)
 68 hit_ball(angle)
 69 ball_pos = (120.0, 120.0)
 70 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 71 clear_message()
 72
 73 def elapsed_ms():
 74 """Returns milliseconds elapsed since last called"""
 75 global ms
 76 now = time.ticks_ms()
 77 diff = time.ticks_diff(now, ms)
 78 ms = now # The secret word is "physics"
 79 return diff
 80
 81 def draw_screen_layout():
 82 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 83 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 84 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 85 display.draw_text("SCORE", 4, 0, BLUE, 1)
 86 display.draw_text("LIVES", 150, 0, BLUE, 1)
 87
 88 def beep(freq):
 89 global sound_cut
 90 tone.set_pitch(freq)
 91 tone.play()
 92 sound_cut = 50 # ms countdown
 93
 94 def check_buttons():
 95 global pad_v, n_lives, score
 96
 97 if buttons.is_pressed(BTN_L):
 98 pad_v = -pad_speed
 99 elif buttons.is_pressed(BTN_B):
100 pad_v = +pad_speed
101 else:
102 pad_v = 0 # Stop
103
104 if n_lives == 0 and buttons.is_pressed(BTN_U):
105 n_lives = START_LIVES + 1

Bricks are worth POINTS!

This tuple will be used to retrieve the score value based on the row in the brick grid.
These values are based on the original Atari game: RED is highest, and YELLOW is lowest.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 270 of 295

106 score = 0
107 setup_bricks()

108
109 def new_ball():
110 global n_lives, serve_timer
111 n_lives = n_lives - 1
112 update_score()
113 if n_lives > 0:
114 serve_timer = 2000
115 show_message("Serving...", "Get Ready!", GREEN)
116 else:
117 show_message("Game Over!", "U = play again", RED)
118
119 def update_score():
120 display.fill_rect(45, 0, 100, 20, BLACK)
121 display.draw_text(str(score), 45, 0, WHITE, 2)
122 display.fill_rect(195, 0, 45, 20, BLACK)
123 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
124
125 def clear_message():
126 display.fill_rect(1, 120, 238, 80, BLACK)
127
128 def show_message(banner, note, color):
129 clear_message()
130 display.draw_text(banner, 30, 120, color, 3)
131 display.draw_text(note, 30, 160, WHITE, 2)
132
133 def hit_ball(angle):
134 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
135 angle = angle * math.pi / 180
136 ball_v[0] = math.cos(angle) * ball_speed
137 ball_v[1] = -math.sin(angle) * ball_speed
138
139 def setup_bricks():
140 global bricks, ball_brick
141 ball_brick = (0, 0) # Ball's previous (i,j) in brick matrix
142 bricks = [] # Empty matrix (list of rows)
143 for i in range(BRICKS_DOWN):
144 bricks.append([]) # Empty row (list of columns)
145 for j in range(BRICKS_ACROSS):
146 bricks[i].append(True) # Add column to this row
147 brick_place(i, j, BRICK_COLORS[i])
148
149 def brick_place(i, j, color):
150 """Draw a brick at the given row,column matrix location"""
151 x = BRICKS_X_START + j * COL_W + BALL_SZ
152 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
153 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
154
155 def check_bricks(x, y):
156 """Check for ball collision, return 'collided' True/False"""
157 global ball_brick, score
158 collided = False
159
160 # Calculate row and column based on ball x,y
161 i = int((y - BRICKS_Y_START) / ROW_H) # row
162 j = int((x - BRICKS_X_START) / COL_W) # column
163
164 # Get ball's previous i,j position
165 i_prev, j_prev = ball_brick
166 ball_brick = (i, j) # save for next time
167
168 # Is ball inside the brick grid?
169 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
170 collided = bricks[i][j] # Is there a brick here?
171
172 if collided:
173 # Destroy brick
174 bricks[i][j] = False
175 brick_place(i, j, BLACK) # Erase

A new game should rack-up a new set of bricks!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 271 of 295

176 beep(BRICK_TONE)
177 score = score + BRICK_POINTS[i]
178 update_score()

179
180 # Bounce ball
181 if i != i_prev: # Row changed -> bounce Y
182 ball_v[1] = ball_v[1] * -1
183 if j != j_prev: # Column changed -> bounce X
184 ball_v[0] = ball_v[0] * -1
185
186 return collided
187
188 setup_bricks()
189 draw_screen_layout()
190 new_ball()
191 draw_paddle()
192
193 ms = time.ticks_ms()
194
195 while True:
196 dt = elapsed_ms()
197 check_buttons()
198
199 # Update paddle
200 if pad_v:
201 pad_pos = pad_pos + pad_v * dt
202 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
203 draw_paddle()
204
205 # Check sound timer
206 if sound_cut > 0:
207 sound_cut = sound_cut - dt
208 if sound_cut <= 0:
209 tone.stop()
210
211 # Check serve timer
212 if serve_timer > 0:
213 serve_timer = serve_timer - dt
214 if serve_timer <= 0:
215 serve_ball()
216 else:
217 continue
218
219 if n_lives == 0:
220 continue
221
222 # Update ball
223 x, y = ball_pos
224 x = x + ball_v[0] * dt
225 y = y + ball_v[1] * dt
226
227 # Check for collision with walls
228 collision = False
229 if x <= 1 or 240 > x >= 239 - BALL_SZ:
230 collision = True
231 beep(SIDES_TONE)
232 ball_v[0] = ball_v[0] * -1
233 if y <= TOP_WALL + 1:
234 collision = True
235 beep(TOP_TONE)
236 ball_v[1] = ball_v[1] * -1
237 elif y > 240:
238 new_ball()
239
240 # Check for collision with paddle
241 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
242 # Calculate ball position relative to paddle
243 pad_ball = x + BALL_SZ - pad_pos

Add score-keeping to your brick collision handler.

Retrieve the score for the brick's row [i]
BTW, is score a global ? Just asking...

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 272 of 295

244 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
245 if hit:
246 # Bounce direction based on paddle position
247 center = (PADDLE_W + BALL_SZ) / 2
248 pad_ratio = (pad_ball - center) / center # range -1 to +1
249 angle = 90 - 60 * pad_ratio
250 hit_ball(angle)
251
252 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
253 beep(PADDLE_TONE)
254 collision = True
255 # Remove score increase/update: this is NOT Handball!

256
257 if not collision:
258 collision = check_bricks(x, y)
259
260 # Draw ball
261 if not collision:
262 ball_pos = (x, y)
263 draw_ball()
264

Hint:

Secret Word?
Now that's gamification!

Check the code in the CodeTrek.

The secret word is hidden somewhere in there...

Be sure to review ALL the code in the CodeTrek!

Goals:

Create a tuple holding the official score value for each row of bricks.

Feel free to personalize these values later. But for now I want to see the original values.

Call your setup_bricks() function from check_buttons() when a new game is started.

Add score-keeping to your brick collision handler in check_bricks().

Remove the scoring in your game loop.

No score for hitting the paddle!

Review the code, and add at least two comments.

One of them should contain the "secret word" (see the Hints)

Tools Found: Comments, tuple, Locals and Globals

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout

Delete some code here.

Breakout doesn't hand out points unless you break stuff!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 273 of 295

 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 SIDES_TONE = 392
 19 TOP_TONE = 494
 20 PADDLE_TONE = 587
 21 BRICK_TONE = 740
 22
 23 # Paddle state
 24 pad_speed = 0.28 # 280px / 1000ms
 25 pad_pos = 110.0 # Paddle X position
 26 pad_pix = 100
 27
 28 # Game state
 29 START_LIVES = 3 # Lives remaining at start of game
 30 score = 0
 31 n_lives = START_LIVES + 1
 32 serve_timer = 2000
 33 ball_speed = 0.15 # 150 pixels per second
 34
 35 # Bricks
 36 BRICKS_ACROSS = 10
 37 BRICKS_DOWN = 8
 38 BRICK_W = 20
 39 BRICK_H = 6
 40 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 41 BRICKS_Y_START = 30
 42 COL_W = BRICK_W + BALL_SZ
 43 ROW_H = BRICK_H + BALL_SZ
 44 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row
 45 BRICK_POINTS = (7, 7, 3, 3, 5, 5, 1, 1)
 46
 47 def draw_paddle():
 48 global pad_pix
 49 pix = round(pad_pos)
 50 if pix != pad_pix:
 51 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 52 pad_pix = pix
 53 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 54
 55 def draw_ball():
 56 global ball_pix
 57 pix = (round(ball_pos[0]), round(ball_pos[1]))
 58 if pix != ball_pix:
 59 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 60 ball_pix = pix
 61 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 62
 63 def serve_ball():
 64 global ball_pos, ball_v, ball_pix
 65 # Set ball_v: serve toward paddle
 66 ball_v = [0,0]
 67 angle = random.randrange(-60, -120, -1)
 68 hit_ball(angle)
 69 ball_pos = (120.0, 120.0)
 70 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 71 clear_message()
 72
 73 def elapsed_ms():
 74 """Returns milliseconds elapsed since last called"""
 75 global ms
 76 now = time.ticks_ms()
 77 diff = time.ticks_diff(now, ms)
 78 ms = now
 79 return diff
 80
 81 def draw_screen_layout():
 82 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 83 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 274 of 295

 84 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 85 display.draw_text("SCORE", 4, 0, BLUE, 1)
 86 display.draw_text("LIVES", 150, 0, BLUE, 1)
 87
 88 def beep(freq):
 89 global sound_cut
 90 tone.set_pitch(freq)
 91 tone.play()
 92 sound_cut = 50 # ms countdown
 93
 94 def check_buttons():
 95 global pad_v, n_lives, score
 96
 97 if buttons.is_pressed(BTN_L):
 98 pad_v = -pad_speed
 99 elif buttons.is_pressed(BTN_B):
100 pad_v = +pad_speed
101 else:
102 pad_v = 0 # Stop
103
104 if n_lives == 0 and buttons.is_pressed(BTN_U):
105 n_lives = START_LIVES + 1
106 score = 0
107 setup_bricks()
108
109 def new_ball():
110 global n_lives, serve_timer
111 n_lives = n_lives - 1
112 update_score()
113 if n_lives > 0:
114 serve_timer = 2000
115 show_message("Serving...", "Get Ready!", GREEN)
116 else:
117 show_message("Game Over!", "U = play again", RED)
118
119 def update_score():
120 display.fill_rect(45, 0, 100, 20, BLACK)
121 display.draw_text(str(score), 45, 0, WHITE, 2)
122 display.fill_rect(195, 0, 45, 20, BLACK)
123 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
124
125 def clear_message():
126 display.fill_rect(1, 120, 238, 80, BLACK)
127
128 def show_message(banner, note, color):
129 clear_message()
130 display.draw_text(banner, 30, 120, color, 3)
131 display.draw_text(note, 30, 160, WHITE, 2)
132
133 def hit_ball(angle):
134 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
135 angle = angle * math.pi / 180
136 ball_v[0] = math.cos(angle) * ball_speed
137 ball_v[1] = -math.sin(angle) * ball_speed
138
139 def setup_bricks():
140 global bricks, ball_brick
141 ball_brick = (0, 0) # Ball's previous (i,j) in brick matrix
142 bricks = [] # Empty matrix (list of rows)
143 for i in range(BRICKS_DOWN):
144 bricks.append([]) # Empty row (list of columns)
145 for j in range(BRICKS_ACROSS):
146 bricks[i].append(True) # Add column to this row
147 brick_place(i, j, BRICK_COLORS[i])
148
149 def brick_place(i, j, color):
150 """Draw a brick at the given row,column matrix location"""
151 x = BRICKS_X_START + j * COL_W + BALL_SZ
152 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
153 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
154
155 def check_bricks(x, y):
156 """Check for ball collision, return 'collided' True/False"""
157 global ball_brick, score
158 collided = False

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 275 of 295

159
160 # Calculate row and column based on ball x,y
161 i = int((y - BRICKS_Y_START) / ROW_H) # row
162 j = int((x - BRICKS_X_START) / COL_W) # column
163
164 # Get ball's previous i,j position
165 i_prev, j_prev = ball_brick
166 ball_brick = (i, j) # save for next time
167
168 # Is ball inside the brick grid?
169 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
170 collided = bricks[i][j] # Is there a brick here?
171
172 if collided:
173 # Destroy brick
174 bricks[i][j] = False
175 brick_place(i, j, BLACK) # Erase
176 beep(BRICK_TONE)
177 score = score + BRICK_POINTS[i]
178 update_score()
179
180 # Bounce ball with proper physics
181 if i != i_prev: # Row changed -> bounce Y
182 ball_v[1] = ball_v[1] * -1
183 if j != j_prev: # Column changed -> bounce X
184 ball_v[0] = ball_v[0] * -1
185
186 return collided
187
188 setup_bricks()
189 draw_screen_layout()
190 new_ball()
191 draw_paddle()
192
193 ms = time.ticks_ms()
194
195 while True:
196 dt = elapsed_ms()
197 check_buttons()
198
199 # Update paddle
200 if pad_v:
201 pad_pos = pad_pos + pad_v * dt
202 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
203 draw_paddle()
204
205 # Check sound timer
206 if sound_cut > 0:
207 sound_cut = sound_cut - dt
208 if sound_cut <= 0:
209 tone.stop()
210
211 # Check serve timer
212 if serve_timer > 0:
213 serve_timer = serve_timer - dt
214 if serve_timer <= 0:
215 serve_ball()
216 else:
217 continue
218
219 if n_lives == 0:
220 continue
221
222 # Update ball
223 x, y = ball_pos
224 x = x + ball_v[0] * dt
225 y = y + ball_v[1] * dt
226
227 # Check for collision with walls
228 collision = False
229 if x <= 1 or 240 > x >= 239 - BALL_SZ:
230 collision = True
231 beep(SIDES_TONE)
232 ball_v[0] = ball_v[0] * -1
233 if y <= TOP_WALL + 1:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 276 of 295

234 collision = True
235 beep(TOP_TONE)
236 ball_v[1] = ball_v[1] * -1
237 elif y > 240:
238 new_ball()
239
240 # Check for collision with paddle
241 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
242 # Calculate ball position relative to paddle
243 pad_ball = x + BALL_SZ - pad_pos
244 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
245 if hit:
246 # Bounce direction based on paddle position
247 center = (PADDLE_W + BALL_SZ) / 2
248 pad_ratio = (pad_ball - center) / center # range -1 to +1
249 angle = 90 - 60 * pad_ratio
250 hit_ball(angle)
251
252 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
253 beep(PADDLE_TONE)
254 collision = True
255 # Remove score increase/update: this is NOT Handball!
256
257 if not collision:
258 collision = check_bricks(x, y)
259
260 # Draw ball
261 if not collision:
262 ball_pos = (x, y)
263 draw_ball()
264

Objective 7 - Sound Toggle

Remix Feature: Add a "Mute" Button
There are SO many features you could add to this game!

These final couple of Objectives are just the beginning.

Silent Play

Sometimes you want to game in silence.

A cool remix would be to add a volume control! That wouldn't be too difficult...

But for now, just a "mute" button will suffice.

Check the 'Trek!

Just a few lines of code and you'll have BTN_A toggling the sound on/off.

This will give you a feeling for what it's like to add other new features to the game. Quite often a new mod will follow the
same pattern:

Add some state (ex: global variables)
Connect it to game events (ex: button press)
Use it to control the flow (ex: disable sound)

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 277 of 295

 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 mute = False

 19 SIDES_TONE = 392
 20 TOP_TONE = 494
 21 PADDLE_TONE = 587
 22 BRICK_TONE = 740
 23
 24 # Paddle state
 25 pad_speed = 0.28 # 280px / 1000ms
 26 pad_pos = 110.0 # Paddle X position
 27 pad_pix = 100
 28
 29 # Game state
 30 START_LIVES = 3 # Lives remaining at start of game
 31 score = 0
 32 n_lives = START_LIVES + 1
 33 serve_timer = 2000
 34 ball_speed = 0.15 # 150 pixels per second
 35
 36 # Bricks
 37 BRICKS_ACROSS = 10
 38 BRICKS_DOWN = 8
 39 BRICK_W = 20
 40 BRICK_H = 6
 41 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 42 BRICKS_Y_START = 30
 43 COL_W = BRICK_W + BALL_SZ
 44 ROW_H = BRICK_H + BALL_SZ
 45 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row
 46 BRICK_POINTS = (7, 7, 3, 3, 5, 5, 1, 1)
 47
 48 def draw_paddle():
 49 global pad_pix
 50 pix = round(pad_pos)
 51 if pix != pad_pix:
 52 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 53 pad_pix = pix
 54 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 55
 56 def draw_ball():
 57 global ball_pix
 58 pix = (round(ball_pos[0]), round(ball_pos[1]))
 59 if pix != ball_pix:
 60 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 61 ball_pix = pix
 62 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 63
 64 def serve_ball():
 65 global ball_pos, ball_v, ball_pix
 66 # Set ball_v: serve toward paddle
 67 ball_v = [0,0]
 68 angle = random.randrange(-60, -120, -1)
 69 hit_ball(angle)
 70 ball_pos = (120.0, 120.0)
 71 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 72 clear_message()
 73
 74 def elapsed_ms():
 75 """Returns milliseconds elapsed since last called"""
 76 global ms

A global variable: Is the game muted?

Set to False so you have sound initially.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 278 of 295

 77 now = time.ticks_ms()
 78 diff = time.ticks_diff(now, ms)
 79 ms = now
 80 return diff
 81
 82 def draw_screen_layout():
 83 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 84 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 85 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 86 display.draw_text("SCORE", 4, 0, BLUE, 1)
 87 display.draw_text("LIVES", 150, 0, BLUE, 1)
 88
 89 def beep(freq):
 90 global sound_cut
 91 if mute:
 92 return

 93 tone.set_pitch(freq)
 94 tone.play()
 95 sound_cut = 50 # ms countdown
 96
 97 def check_buttons():
 98 global pad_v, n_lives, score, mute
 99
100 if buttons.is_pressed(BTN_L):
101 pad_v = -pad_speed
102 elif buttons.is_pressed(BTN_B):
103 pad_v = +pad_speed
104 else:
105 pad_v = 0 # Stop
106
107 if n_lives == 0 and buttons.is_pressed(BTN_U):
108 n_lives = START_LIVES + 1
109 score = 0
110 setup_bricks()
111
112 if buttons.was_pressed(BTN_A):
113 mute = not mute
114 leds.set(LED_A, mute)

115
116 def new_ball():
117 global n_lives, serve_timer
118 n_lives = n_lives - 1
119 update_score()
120 if n_lives > 0:
121 serve_timer = 2000
122 show_message("Serving...", "Get Ready!", GREEN)
123 else:
124 show_message("Game Over!", "U = play again", RED)
125
126 def update_score():
127 display.fill_rect(45, 0, 100, 20, BLACK)
128 display.draw_text(str(score), 45, 0, WHITE, 2)
129 display.fill_rect(195, 0, 45, 20, BLACK)
130 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
131
132 def clear_message():
133 display.fill_rect(1, 120, 238, 80, BLACK)
134
135 def show_message(banner, note, color):
136 clear_message()

Mute Me!

No beeps for you.

Another button to button

Use the not logical operator to toggle the mute state.
Light LED_A when the sound is muted.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 279 of 295

137 display.draw_text(banner, 30, 120, color, 3)
138 display.draw_text(note, 30, 160, WHITE, 2)
139
140 def hit_ball(angle):
141 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
142 angle = angle * math.pi / 180
143 ball_v[0] = math.cos(angle) * ball_speed
144 ball_v[1] = -math.sin(angle) * ball_speed
145
146 def setup_bricks():
147 global bricks, ball_brick
148 ball_brick = (0, 0) # Ball's previous (i,j) in brick matrix
149 bricks = [] # Empty matrix (list of rows)
150 for i in range(BRICKS_DOWN):
151 bricks.append([]) # Empty row (list of columns)
152 for j in range(BRICKS_ACROSS):
153 bricks[i].append(True) # Add column to this row
154 brick_place(i, j, BRICK_COLORS[i])
155
156 def brick_place(i, j, color):
157 """Draw a brick at the given row,column matrix location"""
158 x = BRICKS_X_START + j * COL_W + BALL_SZ
159 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
160 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
161
162 def check_bricks(x, y):
163 """Check for ball collision, return 'collided' True/False"""
164 global ball_brick, score
165 collided = False
166
167 # Calculate row and column based on ball x,y
168 i = int((y - BRICKS_Y_START) / ROW_H) # row
169 j = int((x - BRICKS_X_START) / COL_W) # column
170
171 # Get ball's previous i,j position
172 i_prev, j_prev = ball_brick
173 ball_brick = (i, j) # save for next time
174
175 # Is ball inside the brick grid?
176 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
177 collided = bricks[i][j] # Is there a brick here?
178
179 if collided:
180 # Destroy brick
181 bricks[i][j] = False
182 brick_place(i, j, BLACK) # Erase
183 beep(BRICK_TONE)
184 score = score + BRICK_POINTS[i]
185 update_score()
186
187 # Bounce ball
188 if i != i_prev: # Row changed -> bounce Y
189 ball_v[1] = ball_v[1] * -1
190 if j != j_prev: # Column changed -> bounce X
191 ball_v[0] = ball_v[0] * -1
192
193 return collided
194
195 setup_bricks()
196 draw_screen_layout()
197 new_ball()
198 draw_paddle()
199
200 ms = time.ticks_ms()
201
202 while True:
203 dt = elapsed_ms()
204 check_buttons()
205
206 # Update paddle
207 if pad_v:
208 pad_pos = pad_pos + pad_v * dt
209 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
210 draw_paddle()
211

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 280 of 295

212 # Check sound timer
213 if sound_cut > 0:
214 sound_cut = sound_cut - dt
215 if sound_cut <= 0:
216 tone.stop()
217
218 # Check serve timer
219 if serve_timer > 0:
220 serve_timer = serve_timer - dt
221 if serve_timer <= 0:
222 serve_ball()
223 else:
224 continue
225
226 if n_lives == 0:
227 continue
228
229 # Update ball
230 x, y = ball_pos
231 x = x + ball_v[0] * dt
232 y = y + ball_v[1] * dt
233
234 # Check for collision with walls
235 collision = False
236 if x <= 1 or 240 > x >= 239 - BALL_SZ:
237 collision = True
238 beep(SIDES_TONE)
239 ball_v[0] = ball_v[0] * -1
240 if y <= TOP_WALL + 1:
241 collision = True
242 beep(TOP_TONE)
243 ball_v[1] = ball_v[1] * -1
244 elif y > 240:
245 new_ball()
246
247 # Check for collision with paddle
248 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
249 # Calculate ball position relative to paddle
250 pad_ball = x + BALL_SZ - pad_pos
251 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
252 if hit:
253 # Bounce direction based on paddle position
254 center = (PADDLE_W + BALL_SZ) / 2
255 pad_ratio = (pad_ball - center) / center # range -1 to +1
256 angle = 90 - 60 * pad_ratio
257 hit_ball(angle)
258
259 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
260 beep(PADDLE_TONE)
261 collision = True
262 # Remove score increase/update: this is NOT Handball!
263
264 if not collision:
265 collision = check_bricks(x, y)
266
267 # Draw ball
268 if not collision:
269 ball_pos = (x, y)
270 draw_ball()
271

Goals:

Add a global variable called mute

Initialize it to False.

Check for mute inside your beep() function.

In your check_buttons() function, toggle mute if BTN_A was pressed.

Also use the mute bool to set LED_A !

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 281 of 295

Tools Found: Variables, bool, Locals and Globals, Logical Operators

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 mute = False
 19 SIDES_TONE = 392
 20 TOP_TONE = 494
 21 PADDLE_TONE = 587
 22 BRICK_TONE = 740
 23
 24 # Paddle state
 25 pad_speed = 0.28 # 280px / 1000ms
 26 pad_pos = 110.0 # Paddle X position
 27 pad_pix = 100
 28
 29 # Game state
 30 START_LIVES = 3 # Lives remaining at start of game
 31 score = 0
 32 n_lives = START_LIVES + 1
 33 serve_timer = 2000
 34 ball_speed = 0.15 # 150 pixels per second
 35
 36 # Bricks
 37 BRICKS_ACROSS = 10
 38 BRICKS_DOWN = 8
 39 BRICK_W = 20
 40 BRICK_H = 6
 41 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 42 BRICKS_Y_START = 30
 43 COL_W = BRICK_W + BALL_SZ
 44 ROW_H = BRICK_H + BALL_SZ
 45 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row
 46 BRICK_POINTS = (7, 7, 3, 3, 5, 5, 1, 1)
 47
 48 def draw_paddle():
 49 global pad_pix
 50 pix = round(pad_pos)
 51 if pix != pad_pix:
 52 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 53 pad_pix = pix
 54 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 55
 56 def draw_ball():
 57 global ball_pix
 58 pix = (round(ball_pos[0]), round(ball_pos[1]))
 59 if pix != ball_pix:
 60 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 61 ball_pix = pix
 62 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 63
 64 def serve_ball():
 65 global ball_pos, ball_v, ball_pix
 66 # Set ball_v: serve toward paddle
 67 ball_v = [0,0]
 68 angle = random.randrange(-60, -120, -1)

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 282 of 295

 69 hit_ball(angle)
 70 ball_pos = (120.0, 120.0)
 71 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 72 clear_message()
 73
 74 def elapsed_ms():
 75 """Returns milliseconds elapsed since last called"""
 76 global ms
 77 now = time.ticks_ms()
 78 diff = time.ticks_diff(now, ms)
 79 ms = now
 80 return diff
 81
 82 def draw_screen_layout():
 83 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 84 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 85 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 86 display.draw_text("SCORE", 4, 0, BLUE, 1)
 87 display.draw_text("LIVES", 150, 0, BLUE, 1)
 88
 89 def beep(freq):
 90 global sound_cut
 91 if mute:
 92 return
 93 tone.set_pitch(freq)
 94 tone.play()
 95 sound_cut = 50 # ms countdown
 96
 97 def check_buttons():
 98 global pad_v, n_lives, score, mute
 99
100 if buttons.is_pressed(BTN_L):
101 pad_v = -pad_speed
102 elif buttons.is_pressed(BTN_B):
103 pad_v = +pad_speed
104 else:
105 pad_v = 0 # Stop
106
107 if n_lives == 0 and buttons.is_pressed(BTN_U):
108 n_lives = START_LIVES + 1
109 score = 0
110 setup_bricks()
111
112 if buttons.was_pressed(BTN_A):
113 mute = not mute
114 leds.set(LED_A, mute)
115
116 def new_ball():
117 global n_lives, serve_timer
118 n_lives = n_lives - 1
119 update_score()
120 if n_lives > 0:
121 serve_timer = 2000
122 show_message("Serving...", "Get Ready!", GREEN)
123 else:
124 show_message("Game Over!", "U = play again", RED)
125
126 def update_score():
127 display.fill_rect(45, 0, 100, 20, BLACK)
128 display.draw_text(str(score), 45, 0, WHITE, 2)
129 display.fill_rect(195, 0, 45, 20, BLACK)
130 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
131
132 def clear_message():
133 display.fill_rect(1, 120, 238, 80, BLACK)
134
135 def show_message(banner, note, color):
136 clear_message()
137 display.draw_text(banner, 30, 120, color, 3)
138 display.draw_text(note, 30, 160, WHITE, 2)
139
140 def hit_ball(angle):
141 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
142 angle = angle * math.pi / 180
143 ball_v[0] = math.cos(angle) * ball_speed

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 283 of 295

144 ball_v[1] = -math.sin(angle) * ball_speed
145
146 def setup_bricks():
147 global bricks, ball_brick
148 ball_brick = (0, 0) # Ball's previous (i,j) in brick matrix
149 bricks = [] # Empty matrix (list of rows)
150 for i in range(BRICKS_DOWN):
151 bricks.append([]) # Empty row (list of columns)
152 for j in range(BRICKS_ACROSS):
153 bricks[i].append(True) # Add column to this row
154 brick_place(i, j, BRICK_COLORS[i])
155
156 def brick_place(i, j, color):
157 """Draw a brick at the given row,column matrix location"""
158 x = BRICKS_X_START + j * COL_W + BALL_SZ
159 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
160 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
161
162 def check_bricks(x, y):
163 """Check for ball collision, return 'collided' True/False"""
164 global ball_brick, score
165 collided = False
166
167 # Calculate row and column based on ball x,y
168 i = int((y - BRICKS_Y_START) / ROW_H) # row
169 j = int((x - BRICKS_X_START) / COL_W) # column
170
171 # Get ball's previous i,j position
172 i_prev, j_prev = ball_brick
173 ball_brick = (i, j) # save for next time
174
175 # Is ball inside the brick grid?
176 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
177 collided = bricks[i][j] # Is there a brick here?
178
179 if collided:
180 # Destroy brick
181 bricks[i][j] = False
182 brick_place(i, j, BLACK) # Erase
183 beep(BRICK_TONE)
184 score = score + BRICK_POINTS[i]
185 update_score()
186
187 # Bounce ball
188 if i != i_prev: # Row changed -> bounce Y
189 ball_v[1] = ball_v[1] * -1
190 if j != j_prev: # Column changed -> bounce X
191 ball_v[0] = ball_v[0] * -1
192
193 return collided
194
195 setup_bricks()
196 draw_screen_layout()
197 new_ball()
198 draw_paddle()
199
200 ms = time.ticks_ms()
201
202 while True:
203 dt = elapsed_ms()
204 check_buttons()
205
206 # Update paddle
207 if pad_v:
208 pad_pos = pad_pos + pad_v * dt
209 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
210 draw_paddle()
211
212 # Check sound timer
213 if sound_cut > 0:
214 sound_cut = sound_cut - dt
215 if sound_cut <= 0:
216 tone.stop()
217
218 # Check serve timer

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 284 of 295

219 if serve_timer > 0:
220 serve_timer = serve_timer - dt
221 if serve_timer <= 0:
222 serve_ball()
223 else:
224 continue
225
226 if n_lives == 0:
227 continue
228
229 # Update ball
230 x, y = ball_pos
231 x = x + ball_v[0] * dt
232 y = y + ball_v[1] * dt
233
234 # Check for collision with walls
235 collision = False
236 if x <= 1 or 240 > x >= 239 - BALL_SZ:
237 collision = True
238 beep(SIDES_TONE)
239 ball_v[0] = ball_v[0] * -1
240 if y <= TOP_WALL + 1:
241 collision = True
242 beep(TOP_TONE)
243 ball_v[1] = ball_v[1] * -1
244 elif y > 240:
245 new_ball()
246
247 # Check for collision with paddle
248 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
249 # Calculate ball position relative to paddle
250 pad_ball = x + BALL_SZ - pad_pos
251 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
252 if hit:
253 # Bounce direction based on paddle position
254 center = (PADDLE_W + BALL_SZ) / 2
255 pad_ratio = (pad_ball - center) / center # range -1 to +1
256 angle = 90 - 60 * pad_ratio
257 hit_ball(angle)
258
259 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
260 beep(PADDLE_TONE)
261 collision = True
262 # Remove score increase/update: this is NOT Handball!
263
264 if not collision:
265 collision = check_bricks(x, y)
266
267 # Draw ball
268 if not collision:
269 ball_pos = (x, y)
270 draw_ball()
271

Objective 8 - Perpetual Play

Breakout 4ever!
Maybe even 5ever...

One last extra feature to add, and this one is pretty essential!

It's also an example of how you can adjust the game-play. Think about that for future remixes you may
want to code!

Clearing the Space

The goal of Breakout is to blast all the bricks, right?

What happens when you clear them all?
It's kind of a let-down, eh?

First order of business then, is to re-rack a new set of bricks after the player clears them all.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 285 of 295

+1 for Extra Lives!

You start out with 3 lives, but it's all too easy to lose them!

As a bonus for clearing a full screen of bricks, grant the player another life!
A careful player could stock up on lives, adding a new one every new screen.

These changes make the game suitable for those marathon gaming sessions where you play for hours to hit the all-time high score.
With a few extra lives under your belt, you can afford to take a sip of water every now and then too :-)

Check the 'Trek!

The new check_clear() function has a decent amount of housekeeping to do!

Try running and testing your code as you add each section.
You will learn a lot about the code itself, AND better understand why those sections are needed!

Run It!

Are you skilled enough to test your new features?

(you could always cheat and mod the code for more initial lives if ya need a boost!)

CodeTrek:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 mute = False
 19 SIDES_TONE = 392
 20 TOP_TONE = 494
 21 PADDLE_TONE = 587
 22 BRICK_TONE = 740
 23
 24 # Paddle state
 25 pad_speed = 0.28 # 280px / 1000ms
 26 pad_pos = 110.0 # Paddle X position
 27 pad_pix = 100
 28
 29 # Game state
 30 START_LIVES = 3 # Lives remaining at start of game
 31 score = 0
 32 n_lives = START_LIVES + 1
 33 serve_timer = 2000
 34 ball_speed = 0.15 # 150 pixels per second
 35
 36 # Bricks
 37 BRICKS_ACROSS = 10
 38 BRICKS_DOWN = 8
 39 BRICK_W = 20
 40 BRICK_H = 6
 41 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 42 BRICKS_Y_START = 30
 43 COL_W = BRICK_W + BALL_SZ
 44 ROW_H = BRICK_H + BALL_SZ
 45 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 286 of 295

 46 BRICK_POINTS = (7, 7, 3, 3, 5, 5, 1, 1)
 47
 48 def draw_paddle():
 49 global pad_pix
 50 pix = round(pad_pos)
 51 if pix != pad_pix:
 52 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 53 pad_pix = pix
 54 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 55
 56 def draw_ball():
 57 global ball_pix
 58 pix = (round(ball_pos[0]), round(ball_pos[1]))
 59 if pix != ball_pix:
 60 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 61 ball_pix = pix
 62 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 63
 64 def serve_ball():
 65 global ball_pos, ball_v, ball_pix
 66 # Set ball_v: serve toward paddle
 67 ball_v = [0,0]
 68 angle = random.randrange(-60, -120, -1)
 69 hit_ball(angle)
 70 ball_pos = (120.0, 120.0)
 71 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 72 clear_message()
 73
 74 def elapsed_ms():
 75 """Returns milliseconds elapsed since last called"""
 76 global ms
 77 now = time.ticks_ms()
 78 diff = time.ticks_diff(now, ms)
 79 ms = now
 80 return diff
 81
 82 def draw_screen_layout():
 83 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 84 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 85 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 86 display.draw_text("SCORE", 4, 0, BLUE, 1)
 87 display.draw_text("LIVES", 150, 0, BLUE, 1)
 88
 89 def beep(freq):
 90 global sound_cut
 91 if mute:
 92 return
 93 tone.set_pitch(freq)
 94 tone.play()
 95 sound_cut = 50 # ms countdown
 96
 97 def check_buttons():
 98 global pad_v, n_lives, score, mute
 99
100 if buttons.is_pressed(BTN_L):
101 pad_v = -pad_speed
102 elif buttons.is_pressed(BTN_B):
103 pad_v = +pad_speed
104 else:
105 pad_v = 0 # Stop
106
107 if n_lives == 0 and buttons.is_pressed(BTN_U):
108 n_lives = START_LIVES + 1
109 score = 0
110 setup_bricks()
111
112 if buttons.was_pressed(BTN_A):
113 mute = not mute
114 leds.set(LED_A, mute)
115
116 def new_ball():
117 global n_lives, serve_timer
118 n_lives = n_lives - 1
119 update_score()
120 if n_lives > 0:

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 287 of 295

121 serve_timer = 2000
122 show_message("Serving...", "Get Ready!", GREEN)
123 else:
124 show_message("Game Over!", "U = play again", RED)
125
126 def update_score():
127 display.fill_rect(45, 0, 100, 20, BLACK)
128 display.draw_text(str(score), 45, 0, WHITE, 2)
129 display.fill_rect(195, 0, 45, 20, BLACK)
130 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
131
132 def clear_message():
133 display.fill_rect(1, 120, 238, 80, BLACK)
134
135 def show_message(banner, note, color):
136 clear_message()
137 display.draw_text(banner, 30, 120, color, 3)
138 display.draw_text(note, 30, 160, WHITE, 2)
139
140 def hit_ball(angle):
141 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
142 angle = angle * math.pi / 180
143 ball_v[0] = math.cos(angle) * ball_speed
144 ball_v[1] = -math.sin(angle) * ball_speed
145
146 def setup_bricks():
147 global bricks, ball_brick
148 ball_brick = (0, 0) # Ball's previous (i,j) in brick matrix
149 bricks = [] # Empty matrix (list of rows)
150 for i in range(BRICKS_DOWN):
151 bricks.append([]) # Empty row (list of columns)
152 for j in range(BRICKS_ACROSS):
153 bricks[i].append(True) # Add column to this row
154 brick_place(i, j, BRICK_COLORS[i])
155
156 def brick_place(i, j, color):
157 """Draw a brick at the given row,column matrix location"""
158 x = BRICKS_X_START + j * COL_W + BALL_SZ
159 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
160 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
161
162 def check_bricks(x, y):
163 """Check for ball collision, return 'collided' True/False"""
164 global ball_brick, score
165 collided = False
166
167 # Calculate row and column based on ball x,y
168 i = int((y - BRICKS_Y_START) / ROW_H) # row
169 j = int((x - BRICKS_X_START) / COL_W) # column
170
171 # Get ball's previous i,j position
172 i_prev, j_prev = ball_brick
173 ball_brick = (i, j) # save for next time
174
175 # Is ball inside the brick grid?
176 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
177 collided = bricks[i][j] # Is there a brick here?
178
179 if collided:
180 # Destroy brick
181 bricks[i][j] = False
182 brick_place(i, j, BLACK) # Erase
183 beep(BRICK_TONE)
184 score = score + BRICK_POINTS[i]
185 update_score()
186 check_clear()

187
188 # Bounce ball
189 if i != i_prev: # Row changed -> bounce Y

After a brick has been destroyed, it's time to check if ALL of them have been cleared.

You'll implement the check_clear() function next...

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 288 of 295

190 ball_v[1] = ball_v[1] * -1
191 if j != j_prev: # Column changed -> bounce X
192 ball_v[0] = ball_v[0] * -1
193
194 return collided
195
196 def check_clear():
197 """Check if all bricks have been cleared. If so, reset and +1 lives!"""
198 global n_lives, serve_timer, ball_pos
199 # Search to see if any bricks remain
200 for row in bricks:
201 for b in row:
202 if b:
203 return # Brick found - bail out!

204
205 # All clear! Get an extra life and new rack of bricks :-)
206 n_lives = n_lives + 1
207 update_score()
208 setup_bricks()

209
210 # Erase ball (move offscreen)
211 ball_pos = (-10, -10)
212 draw_ball()

213
214 # Serve again!
215 show_message("Level-Up!", "Next wave...", YELLOW)
216 serve_timer = 2000

217
218 setup_bricks()
219 draw_screen_layout()
220 new_ball()
221 draw_paddle()
222
223 ms = time.ticks_ms()
224
225 while True:
226 dt = elapsed_ms()
227 check_buttons()
228
229 # Update paddle
230 if pad_v:
231 pad_pos = pad_pos + pad_v * dt
232 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)

Search the Matrix!

How do you find if there's a brick still standing?

For each row
and for each brick b in the row

if it's True then...
a brick remains!

If you made it here, ALL bricks are clear!

Grant a bonus life, and call update_score() so it shows!
Set up the next wave of bricks.

Hide the ball.

Normally the ball goes off-screen.
But in this case it is sitting where the last brick was!

Finally, show an encouraging message.

...And get ready for the next serve!

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 289 of 295

233 draw_paddle()
234
235 # Check sound timer
236 if sound_cut > 0:
237 sound_cut = sound_cut - dt
238 if sound_cut <= 0:
239 tone.stop()
240
241 # Check serve timer
242 if serve_timer > 0:
243 serve_timer = serve_timer - dt
244 if serve_timer <= 0:
245 serve_ball()
246 else:
247 continue
248
249 if n_lives == 0:
250 continue
251
252 # Update ball
253 x, y = ball_pos
254 x = x + ball_v[0] * dt
255 y = y + ball_v[1] * dt
256
257 # Check for collision with walls
258 collision = False
259 if x <= 1 or 240 > x >= 239 - BALL_SZ:
260 collision = True
261 beep(SIDES_TONE)
262 ball_v[0] = ball_v[0] * -1
263 if y <= TOP_WALL + 1:
264 collision = True
265 beep(TOP_TONE)
266 ball_v[1] = ball_v[1] * -1
267 elif y > 240:
268 new_ball()
269
270 # Check for collision with paddle
271 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
272 # Calculate ball position relative to paddle
273 pad_ball = x + BALL_SZ - pad_pos
274 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
275 if hit:
276 # Bounce direction based on paddle position
277 center = (PADDLE_W + BALL_SZ) / 2
278 pad_ratio = (pad_ball - center) / center # range -1 to +1
279 angle = 90 - 60 * pad_ratio
280 hit_ball(angle)
281
282 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
283 beep(PADDLE_TONE)
284 collision = True
285
286 if not collision:
287 collision = check_bricks(x, y)
288
289 # Draw ball
290 if not collision:
291 ball_pos = (x, y)
292 draw_ball()
293

Goals:

Define a new function def check_clear() that checks if any bricks remain.

Reset the bricks, add a bonus life, and show a "Level-Up" message too!

Call the new check_clear() function from the collision handler section of check_bricks().

Tools Found: Functions

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 290 of 295

Solution:

 1 from codex import *
 2 import time
 3 from soundlib import *
 4 import math
 5 import random
 6 ioexpander.io_exp_en_irq() # Init buttons (CodeX bug fix)
 7
 8 # Screen layout
 9 TOP_WALL = 20
 10 BALL_SZ = 4
 11 PADDLE_W = 20
 12 PADDLE_H = 8
 13 PADDLE_Y = 220
 14
 15 # Sounds
 16 tone = soundmaker.get_tone('trumpet')
 17 sound_cut = 0 # ms until sound effect stops
 18 mute = False
 19 SIDES_TONE = 392
 20 TOP_TONE = 494
 21 PADDLE_TONE = 587
 22 BRICK_TONE = 740
 23
 24 # Paddle state
 25 pad_speed = 0.28 # 280px / 1000ms
 26 pad_pos = 110.0 # Paddle X position
 27 pad_pix = 100
 28
 29 # Game state
 30 START_LIVES = 3 # Lives remaining at start of game
 31 score = 0
 32 n_lives = START_LIVES + 1
 33 serve_timer = 2000
 34 ball_speed = 0.15 # 150 pixels per second
 35
 36 # Bricks
 37 BRICKS_ACROSS = 10
 38 BRICKS_DOWN = 8
 39 BRICK_W = 20
 40 BRICK_H = 6
 41 BRICKS_X_START = -2 # +BALL_SZ to reach edge of first brick
 42 BRICKS_Y_START = 30
 43 COL_W = BRICK_W + BALL_SZ
 44 ROW_H = BRICK_H + BALL_SZ
 45 BRICK_COLORS = (RED, RED, ORANGE, ORANGE, GREEN, GREEN, YELLOW, YELLOW) # per row
 46 BRICK_POINTS = (7, 7, 3, 3, 5, 5, 1, 1)
 47
 48 def draw_paddle():
 49 global pad_pix
 50 pix = round(pad_pos)
 51 if pix != pad_pix:
 52 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLACK)
 53 pad_pix = pix
 54 display.fill_rect(pad_pix, PADDLE_Y, PADDLE_W, PADDLE_H, BLUE)
 55
 56 def draw_ball():
 57 global ball_pix
 58 pix = (round(ball_pos[0]), round(ball_pos[1]))
 59 if pix != ball_pix:
 60 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, BLACK)
 61 ball_pix = pix
 62 display.fill_rect(ball_pix[0], ball_pix[1], BALL_SZ, BALL_SZ, WHITE)
 63
 64 def serve_ball():
 65 global ball_pos, ball_v, ball_pix
 66 # Set ball_v: serve toward paddle
 67 ball_v = [0,0]
 68 angle = random.randrange(-60, -120, -1)
 69 hit_ball(angle)
 70 ball_pos = (120.0, 120.0)
 71 ball_pix = (round(ball_pos[0]), round(ball_pos[1]))
 72 clear_message()

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 291 of 295

 73
 74 def elapsed_ms():
 75 """Returns milliseconds elapsed since last called"""
 76 global ms
 77 now = time.ticks_ms()
 78 diff = time.ticks_diff(now, ms)
 79 ms = now
 80 return diff
 81
 82 def draw_screen_layout():
 83 display.draw_line(0, TOP_WALL, 0, 239, WHITE)
 84 display.draw_line(0, TOP_WALL, 239, TOP_WALL, WHITE)
 85 display.draw_line(239, TOP_WALL, 239, 239, WHITE)
 86 display.draw_text("SCORE", 4, 0, BLUE, 1)
 87 display.draw_text("LIVES", 150, 0, BLUE, 1)
 88
 89 def beep(freq):
 90 global sound_cut
 91 if mute:
 92 return
 93 tone.set_pitch(freq)
 94 tone.play()
 95 sound_cut = 50 # ms countdown
 96
 97 def check_buttons():
 98 global pad_v, n_lives, score, mute
 99
100 if buttons.is_pressed(BTN_L):
101 pad_v = -pad_speed
102 elif buttons.is_pressed(BTN_B):
103 pad_v = +pad_speed
104 else:
105 pad_v = 0 # Stop
106
107 if n_lives == 0 and buttons.is_pressed(BTN_U):
108 n_lives = START_LIVES + 1
109 score = 0
110 setup_bricks()
111
112 if buttons.was_pressed(BTN_A):
113 mute = not mute
114 leds.set(LED_A, mute)
115
116 def new_ball():
117 global n_lives, serve_timer
118 n_lives = n_lives - 1
119 update_score()
120 if n_lives > 0:
121 serve_timer = 2000
122 show_message("Serving...", "Get Ready!", GREEN)
123 else:
124 show_message("Game Over!", "U = play again", RED)
125
126 def update_score():
127 display.fill_rect(45, 0, 100, 20, BLACK)
128 display.draw_text(str(score), 45, 0, WHITE, 2)
129 display.fill_rect(195, 0, 45, 20, BLACK)
130 display.draw_text(str(n_lives), 195, 0, WHITE, 2)
131
132 def clear_message():
133 display.fill_rect(1, 120, 238, 80, BLACK)
134
135 def show_message(banner, note, color):
136 clear_message()
137 display.draw_text(banner, 30, 120, color, 3)
138 display.draw_text(note, 30, 160, WHITE, 2)
139
140 def hit_ball(angle):
141 """Set new velocity: angle 0-180 goes up, 180-360 goes down"""
142 angle = angle * math.pi / 180
143 ball_v[0] = math.cos(angle) * ball_speed
144 ball_v[1] = -math.sin(angle) * ball_speed
145
146 def setup_bricks():
147 global bricks, ball_brick

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 292 of 295

148 ball_brick = (0, 0) # Ball's previous (i,j) in brick matrix
149 bricks = [] # Empty matrix (list of rows)
150 for i in range(BRICKS_DOWN):
151 bricks.append([]) # Empty row (list of columns)
152 for j in range(BRICKS_ACROSS):
153 bricks[i].append(True) # Add column to this row
154 brick_place(i, j, BRICK_COLORS[i])
155
156 def brick_place(i, j, color):
157 """Draw a brick at the given row,column matrix location"""
158 x = BRICKS_X_START + j * COL_W + BALL_SZ
159 y = BRICKS_Y_START + i * ROW_H + BALL_SZ
160 display.fill_rect(x, y, BRICK_W, BRICK_H, color)
161
162 def check_bricks(x, y):
163 """Check for ball collision, return 'collided' True/False"""
164 global ball_brick, score
165 collided = False
166
167 # Calculate row and column based on ball x,y
168 i = int((y - BRICKS_Y_START) / ROW_H) # row
169 j = int((x - BRICKS_X_START) / COL_W) # column
170
171 # Get ball's previous i,j position
172 i_prev, j_prev = ball_brick
173 ball_brick = (i, j) # save for next time
174
175 # Is ball inside the brick grid?
176 if 0 <= i < BRICKS_DOWN and 0 <= j < BRICKS_ACROSS:
177 collided = bricks[i][j] # Is there a brick here?
178
179 if collided:
180 # Destroy brick
181 bricks[i][j] = False
182 brick_place(i, j, BLACK) # Erase
183 beep(BRICK_TONE)
184 score = score + BRICK_POINTS[i]
185 update_score()
186 check_clear()
187
188 # Bounce ball
189 if i != i_prev: # Row changed -> bounce Y
190 ball_v[1] = ball_v[1] * -1
191 if j != j_prev: # Column changed -> bounce X
192 ball_v[0] = ball_v[0] * -1
193
194 return collided
195
196 def check_clear():
197 """Check if all bricks have been cleared. If so, reset and +1 lives!"""
198 global n_lives, serve_timer, ball_pos
199 # Search to see if any bricks remain
200 for row in bricks:
201 for b in row:
202 if b:
203 return # Brick found - bail out!
204
205 # All clear! Get an extra life and new rack of bricks :-)
206 n_lives = n_lives + 1
207 update_score()
208 setup_bricks()
209
210 # Erase ball (move offscreen)
211 ball_pos = (-10, -10)
212 draw_ball()
213
214 # Serve again!
215 show_message("Level-Up!", "Next wave...", YELLOW)
216 serve_timer = 2000
217
218 setup_bricks()
219 draw_screen_layout()
220 new_ball()
221 draw_paddle()
222

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 293 of 295

223 ms = time.ticks_ms()
224
225 while True:
226 dt = elapsed_ms()
227 check_buttons()
228
229 # Update paddle
230 if pad_v:
231 pad_pos = pad_pos + pad_v * dt
232 pad_pos = min(max(pad_pos, 1), 238 - PADDLE_W)
233 draw_paddle()
234
235 # Check sound timer
236 if sound_cut > 0:
237 sound_cut = sound_cut - dt
238 if sound_cut <= 0:
239 tone.stop()
240
241 # Check serve timer
242 if serve_timer > 0:
243 serve_timer = serve_timer - dt
244 if serve_timer <= 0:
245 serve_ball()
246 else:
247 continue
248
249 if n_lives == 0:
250 continue
251
252 # Update ball
253 x, y = ball_pos
254 x = x + ball_v[0] * dt
255 y = y + ball_v[1] * dt
256
257 # Check for collision with walls
258 collision = False
259 if x <= 1 or 240 > x >= 239 - BALL_SZ:
260 collision = True
261 beep(SIDES_TONE)
262 ball_v[0] = ball_v[0] * -1
263 if y <= TOP_WALL + 1:
264 collision = True
265 beep(TOP_TONE)
266 ball_v[1] = ball_v[1] * -1
267 elif y > 240:
268 new_ball()
269
270 # Check for collision with paddle
271 if not collision and (PADDLE_Y + PADDLE_H) > y >= (PADDLE_Y - BALL_SZ):
272 # Calculate ball position relative to paddle
273 pad_ball = x + BALL_SZ - pad_pos
274 hit = 0 <= pad_ball <= (PADDLE_W + BALL_SZ)
275 if hit:
276 # Bounce direction based on paddle position
277 center = (PADDLE_W + BALL_SZ) / 2
278 pad_ratio = (pad_ball - center) / center # range -1 to +1
279 angle = 90 - 60 * pad_ratio
280 hit_ball(angle)
281
282 ball_pos = (x, PADDLE_Y - BALL_SZ - 1) # ensure above paddle (avoid double-hits)
283 beep(PADDLE_TONE)
284 collision = True
285
286 if not collision:
287 collision = check_bricks(x, y)
288
289 # Draw ball
290 if not collision:
291 ball_pos = (x, y)
292 draw_ball()
293

Mission 16 Complete

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 294 of 295

You Made It!
The Woz would be proud of you!

This was NOT an easy Mission. But your game is super-impressive and quite playable.

Take a few minutes to play Breakout and enjoy the fruits of your labor.

Python with CodeX Mission Content

©2024 Firia Labs Appendix A 295 of 295

